Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Mar;26(3):540-8.
doi: 10.4014/jmb.1511.11008.

Calcium Carbonate Precipitation by Bacillus and Sporosarcina Strains Isolated from Concrete and Analysis of the Bacterial Community of Concrete

Affiliations
Free article

Calcium Carbonate Precipitation by Bacillus and Sporosarcina Strains Isolated from Concrete and Analysis of the Bacterial Community of Concrete

Hyun Jung Kim et al. J Microbiol Biotechnol. 2016 Mar.
Free article

Abstract

Microbially induced calcium carbonate precipitation (CCP) is a long-standing but re-emerging environmental engineering process for production of self-healing concrete, bioremediation, and long-term storage of CO2. CCP-capable bacteria, two Bacillus strains (JH3 and JH7) and one Sporosarcina strain (HYO08), were isolated from two samples of concrete and characterized phylogenetically. Calcium carbonate crystals precipitated by the three strains were morphologically distinct according to field emission scanning electron microscopy. Energy dispersive X-ray spectrometry mapping confirmed biomineralization via extracellular calcium carbonate production. The three strains differed in their physiological characteristics: growth at alkali pH and high NaCl concentrations, and urease activity. Sporosarcina sp. HYO08 and Bacillus sp. JH7 were more alkali- and halotolerant, respectively. Analysis of the community from the same concrete samples using barcoded pyrosequencing revealed that the relative abundance of Bacillus and Sporosarcina species was low, which indicated low culturability of other dominant bacteria. This study suggests that calcium carbonate crystals with different properties can be produced by various CCP-capable strains, and other novel isolates await discovery.

Keywords: Bacillus; Sporosarcina; biomineralization; calcium carbonate; concrete.

PubMed Disclaimer

Publication types

MeSH terms

Substances