Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Apr;167(3):178-89.
doi: 10.1016/j.resmic.2015.12.003. Epub 2015 Dec 18.

A ptsP deficiency in PGPR Pseudomonas fluorescens SF39a affects bacteriocin production and bacterial fitness in the wheat rhizosphere

Affiliations
Free article

A ptsP deficiency in PGPR Pseudomonas fluorescens SF39a affects bacteriocin production and bacterial fitness in the wheat rhizosphere

Agustina Godino et al. Res Microbiol. 2016 Apr.
Free article

Abstract

Pseudomonas fluorescens SF39a is a plant-growth-promoting bacterium isolated from wheat rhizosphere. In this report, we demonstrate that this native strain secretes bacteriocins that inhibit growth of phytopathogenic strains of the genera Pseudomonas and Xanthomonas. An S-type pyocin gene was detected in the genome of strain SF39a and named pys. A non-polar pys::Km mutant was constructed. The bacteriocin production was impaired in this mutant. To identify genes involved in bacteriocin regulation, random transposon mutagenesis was carried out. A miniTn5Km1 mutant, called P. fluorescens SF39a-451, showed strongly reduced bacteriocin production. This phenotype was caused by inactivation of the ptsP gene which encodes a phosphoenolpyruvate phosphotransferase (EI(Ntr)) of the nitrogen-related phosphotransferase system (PTS(Ntr)). In addition, this mutant showed a decrease in biofilm formation and protease production, and an increase in surface motility and pyoverdine production compared with the wild-type strain. Moreover, we investigated the ability of strain SF39a-451 to colonize the wheat rhizosphere under greenhouse conditions. Interestingly, the mutant was less competitive than the wild-type strain in the rhizosphere. To our knowledge, this study provides the first evidence of both the relevance of the ptsP gene in bacteriocin production and functional characterization of a pyocin S in P. fluorescens.

Keywords: Bacteriocin; Competitiveness; Phosphotransferase system; Plant growth-promoting rhizobacterium; Pseudomonas; Regulation.

PubMed Disclaimer

Publication types

LinkOut - more resources