Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Sep;171(9):5005-11.
doi: 10.1128/jb.171.9.5005-5011.1989.

Demonstration of rare protein in the outer membrane of Treponema pallidum subsp. pallidum by freeze-fracture analysis

Affiliations

Demonstration of rare protein in the outer membrane of Treponema pallidum subsp. pallidum by freeze-fracture analysis

E M Walker et al. J Bacteriol. 1989 Sep.

Abstract

The surface of Treponema pallidum subsp. pallidum (T. pallidum), the etiologic agent of syphilis, appears antigenically inert and lacks detectable protein, as judged by immunocytochemical and biochemical techniques commonly used to identify the outer membrane (OM) constituents of gram-negative bacteria. We examined T. pallidum by freeze-fracture electron microscopy to visualize the architecture of its OM. Treponema phagedenis biotype Reiter (T. phagedenis Reiter), a nonpathogenic host-associated treponeme, and Spirochaeta aurantia, a free-living spirochete, were studied similarly. Few intramembranous particles interrupted the smooth convex and concave fracture faces of the OM of T. pallidum, demonstrating that the OM of this organism is an unusual, nearly naked lipid bilayer. In contrast, the concave fracture face of the OM of S. aurantia was densely covered with particles, indicating the presence of abundant integral membrane proteins, a feature shared by typical gram-negative organisms. The concentration of particles in the OM concave fracture face of T. phagedenis Reiter was intermediate between those of T. pallidum and S. aurantia. Similar to typical gram-negative bacteria, the OM convex fracture faces of the three spirochetes contained relatively few particles. The unique molecular architecture of the OM of T. pallidum can explain the puzzling in vitro properties of the surface of the organism and may reflect a specific adaptation by which treponemes evade the host immune response.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Immunol. 1976 Jul;117(1):197-207 - PubMed
    1. Infect Immun. 1975 May;11(5):1133-40 - PubMed
    1. Acta Pathol Microbiol Scand C. 1979 Aug;87C(4):263-8 - PubMed
    1. Infect Immun. 1979 Dec;26(3):1048-56 - PubMed
    1. Int Rev Cytol. 1981;72:229-317 - PubMed

Publication types

MeSH terms

Substances

LinkOut - more resources