Natural selection against a circadian clock gene mutation in mice
- PMID: 26715747
- PMCID: PMC4725470
- DOI: 10.1073/pnas.1516442113
Natural selection against a circadian clock gene mutation in mice
Abstract
Circadian rhythms with an endogenous period close to or equal to the natural light-dark cycle are considered evolutionarily adaptive ("circadian resonance hypothesis"). Despite remarkable insight into the molecular mechanisms driving circadian cycles, this hypothesis has not been tested under natural conditions for any eukaryotic organism. We tested this hypothesis in mice bearing a short-period mutation in the enzyme casein kinase 1ε (tau mutation), which accelerates free-running circadian cycles. We compared daily activity (feeding) rhythms, survivorship, and reproduction in six replicate populations in outdoor experimental enclosures, established with wild-type, heterozygous, and homozygous mice in a Mendelian ratio. In the release cohort, survival was reduced in the homozygote mutant mice, revealing strong selection against short-period genotypes. Over the course of 14 mo, the relative frequency of the tau allele dropped from initial parity to 20%. Adult survival and recruitment of juveniles into the population contributed approximately equally to the selection for wild-type alleles. The expression of activity during daytime varied throughout the experiment and was significantly increased by the tau mutation. The strong selection against the short-period tau allele observed here contrasts with earlier studies showing absence of selection against a Period 2 (Per2) mutation, which disrupts internal clock function, but does not change period length. These findings are consistent with, and predicted by the theory that resonance of the circadian system plays an important role in individual fitness.
Keywords: circadian rhythms; reproduction; resonance; survival; tau mutation.
Conflict of interest statement
The authors declare no conflict of interest.
Figures




References
-
- Pittendrigh CS, Bruce VG. Daily rhythms as coupled oscillator systems and their relation to thermo- and photoperiodism. In: Withrow AR, Withrow R, editors. Photoperiodism and Related Phenomena in Plants and Animals. American Association for the Advancement of Science; Washington, DC: 1959. pp. 475–505.
-
- von Saint Paul U, Aschoff J. Longevity among blowflies Phormia terraenovae R.D. kept in non-24-hour light-dark cycles. J Comp Physiol. 1978;127(3):191–195.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources