Mechanisms of the epithelial-to-mesenchymal transition in sea urchin embryos
- PMID: 26716069
- PMCID: PMC4681286
- DOI: 10.1080/21688370.2015.1059004
Mechanisms of the epithelial-to-mesenchymal transition in sea urchin embryos
Abstract
Sea urchin mesenchyme is composed of the large micromere-derived spiculogenetic primary mesenchyme cells (PMC), veg2-tier macromere-derived non-spiculogenetic mesenchyme cells, the small micromere-derived germ cells, and the macro- and mesomere-derived neuronal mesenchyme cells. They are formed through the epithelial-to-mesenchymal transition (EMT) and possess multipotency, except PMCs that solely differentiate larval spicules. The process of EMT is associated with modification of epithelial cell surface property that includes loss of affinity to the apical and basal extracellular matrices, inter-epithelial cell adherens junctions and epithelial cell surface-specific proteins. These cell surface structures and molecules are endocytosed during EMT and utilized as initiators of cytoplasmic signaling pathways that often initiate protein phosphorylation to activate the gene regulatory networks. Acquisition of cell motility after EMT in these mesenchyme cells is associated with the expression of proteins such as Lefty, Snail and Seawi. Structural simplicity and genomic database of this model will further promote detailed EMT research.
Keywords: cell surface-to-cytoplasm signal transduction; extracellular matrix; gene regulatory network; neuronal mesenchyme cell; non-spiculogenetic mesenchyme cell; primary mesenchyme cell; sea urchin.
Figures











Similar articles
-
The Snail repressor is required for PMC ingression in the sea urchin embryo.Development. 2007 Mar;134(6):1061-70. doi: 10.1242/dev.02805. Epub 2007 Feb 7. Development. 2007. PMID: 17287249 Free PMC article.
-
A sea urchin in vivo model to evaluate Epithelial-Mesenchymal Transition.Dev Growth Differ. 2017 Apr;59(3):141-151. doi: 10.1111/dgd.12353. Epub 2017 Apr 24. Dev Growth Differ. 2017. PMID: 28436008
-
Primary mesenchyme cell patterning during the early stages following ingression.Dev Biol. 2003 Feb 1;254(1):68-78. doi: 10.1016/s0012-1606(02)00025-8. Dev Biol. 2003. PMID: 12606282
-
Ingression of primary mesenchyme cells of the sea urchin embryo: a precisely timed epithelial mesenchymal transition.Birth Defects Res C Embryo Today. 2007 Dec;81(4):241-52. doi: 10.1002/bdrc.20113. Birth Defects Res C Embryo Today. 2007. PMID: 18228256 Review.
-
Matrix and mineral in the sea urchin larval skeleton.J Struct Biol. 1999 Jun 30;126(3):216-26. doi: 10.1006/jsbi.1999.4105. J Struct Biol. 1999. PMID: 10475684 Review.
Cited by
-
Basement Membranes, Brittlestar Tendons, and Their Mechanical Adaptability.Biology (Basel). 2024 May 24;13(6):375. doi: 10.3390/biology13060375. Biology (Basel). 2024. PMID: 38927255 Free PMC article. Review.
-
microRNA-31 regulates skeletogenesis by direct suppression of Eve and Wnt1.Dev Biol. 2021 Apr;472:98-114. doi: 10.1016/j.ydbio.2021.01.008. Epub 2021 Jan 20. Dev Biol. 2021. PMID: 33484703 Free PMC article.
-
Glyconectin Cell Adhesion Epitope, β-d-GlcpNAc3S-(1→3)-α-l-Fucp, Is Involved in Blastulation of Lytechinus pictus Sea Urchin Embryos.Molecules. 2021 Jun 30;26(13):4012. doi: 10.3390/molecules26134012. Molecules. 2021. PMID: 34209220 Free PMC article.
-
Shared regulatory function of non-genomic thyroid hormone signaling in echinoderm skeletogenesis.Evodevo. 2024 Aug 7;15(1):10. doi: 10.1186/s13227-024-00226-2. Evodevo. 2024. PMID: 39113104 Free PMC article.
-
Pattern of Repetitive Element Transcription Segregate Cell Lineages during the Embryogenesis of Sea Urchin Strongylocentrotus purpuratus.Biomedicines. 2021 Nov 21;9(11):1736. doi: 10.3390/biomedicines9111736. Biomedicines. 2021. PMID: 34829966 Free PMC article.
References
-
- Hay E. Collagen and other matrix glycoproteins in embryogenesis In “Cell Biology of Extracellular Matrix” 2 nd Ed. (Ed. Hay ED). Plenum Press, New York: 1991; 419–62
-
- Kalluri R, Weinberg RA. The basics of epithelial mesenchymal transition. J Clin Invest 2009; 119:1420-8; PMID:19487818; http://dx.doi.org/10.1172/JCI39104 - DOI - PMC - PubMed
-
- Okazaki K. Normal development to metamorphosis In “The Sea Urchin Embryo. Biochemistry and Morphogenesis” (Ed. Czihak G.) Springer-Verlag, Berlin: 1975; 177-232
-
- Katow H, Katow T, Abe K, Ooka S, Kiyomoto M, Hamanaka G. Mesomere-derived glutamate decarboxylase-expressing blastocoelar mesenchyme cells of sea urchin larvae. Biology Open 2014; 3:94-102; PMID:24357228; http://dx.doi.org/10.1242/bio.20136882 - DOI - PMC - PubMed
-
- Ooka S, Yaguchi S, Yaguchi J, Katow T, Katow H. Spatiotemporal expression pattern of an encephalopsin ortholog of the sea urchin Hemicentrotus pulcherrimus (Hp-ECPN) during early development, and its potential role in the larval vertical migration. Dev Growth Differ 2010; 52:195-207; PMID:20067495; http://dx.doi.org/10.1111/j.1440-169X.2009.01154.x - DOI - PubMed
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous