Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Feb:91:236-46.
doi: 10.1016/j.freeradbiomed.2015.12.024. Epub 2015 Dec 23.

Caffeic acid prevents acetaminophen-induced liver injury by activating the Keap1-Nrf2 antioxidative defense system

Affiliations

Caffeic acid prevents acetaminophen-induced liver injury by activating the Keap1-Nrf2 antioxidative defense system

Chun Pang et al. Free Radic Biol Med. 2016 Feb.

Abstract

Acute liver failure induced by acetaminophen (APAP) overdose is the main cause of drug-induced liver injury (DILI). Caffeic acid (CA) is a phenolic compound from many natural products. This study aims to investigate the protective mechanism of CA in APAP-induced liver injury. The results of serum alanine/aspartate aminotransferases (ALT/AST), liver myeloperoxidase (MPO) activity, liver glutathione (GSH) and reactive oxygen species (ROS) levels demonstrated the protection of CA against APAP-induced liver injury. Liver histological observation provided further evidences of CA-induced protection. CA was found to reverse the APAP-induced decreased cell viability in human normal liver L-02 cells and HepG2 cells. CA also reduced the increased cellular ROS level induced by APAP in hepatocytes. The results of luciferase assay and Western-blot analysis showed that CA increased the transcriptional activation of nuclear factor erythroid 2-related factor 2 (Nrf2) in the presence of APAP. Nrf2 siRNA reduced the protection of CA against APAP-induced hepatotoxicity. CA also reversed the APAP-induced decreased mRNA and protein expression of heme oxygenase 1 (HO-1) and

Nad(p)h: quinone oxidoreductase 1(NQO1). In addition, HO-1 inhibitor zinc protoporphyrin (ZnPP) and NQO1 inhibitor diminutol (Dim) reduced the protection of CA against APAP-induced hepatotoxicity. CA also decreased the expression of kelch-like ECH-associated protein-1(Keap1). Molecular docking indicated the potential interacting of CA with Nrf2 binding site in the Keap1 protein. CA had little effect on the enzymatic activity of cytochrome P450 (CYP) 3A4 and CYP2E1 in vitro. In conclusion, we demonstrated that CA prevented APAP-induced hepatotoxicity by decreasing Keap1 expression, inhibiting binding of Keap1 to Nrf2, and thus activating Nrf2 and leading to increased expression of antioxidative signals including HO-1 and NQO1.

Keywords: Acetaminophen; Caffeic acid; Hepatotoxicity; Keap1; Nrf2.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources