Humanized hemato-lymphoid system mice
- PMID: 26721800
- PMCID: PMC4697887
- DOI: 10.3324/haematol.2014.115212
Humanized hemato-lymphoid system mice
Abstract
Over the last decades, incrementally improved xenograft mouse models, supporting the engraftment and development of a human hemato-lymphoid system, have been developed and now represent an important research tool in the field. The most significant contributions made by means of humanized mice are the identification of normal and leukemic hematopoietic stem cells, the characterization of the human hematopoietic hierarchy, and their use as preclinical therapy models for malignant hematopoietic disorders. Successful xenotransplantation depends on three major factors: tolerance by the mouse host, correct spatial location, and appropriately cross-reactive support and interaction factors such as cytokines and major histocompatibility complex molecules. Each of these can be modified. Experimental approaches include the genetic modification of mice to faithfully express human support factors as non-cross-reactive cytokines, to create free niche space, the co-transplantation of human mesenchymal stem cells, the implantation of humanized ossicles or other stroma, and the implantation of human thymic tissue. Besides the source of hematopoietic cells, the conditioning regimen and the route of transplantation also significantly affect human hematopoietic development in vivo. We review here the achievements, most recent developments, and the remaining challenges in the generation of pre-clinically-predictive systems for human hematology and immunology, closely resembling the human situation in a xenogeneic mouse environment.
Copyright© Ferrata Storti Foundation.
Figures






References
-
- Kamel-Reid S, Dick JE. Engraftment of immune-deficient mice with human hematopoietic stem cells. Science. 1988;242(4886):1706–1709. - PubMed
-
- Lapidot T, Pflumio F, Doedens M, Murdoch B, Williams DE, Dick JE. Cytokine stimulation of multilineage hematopoiesis from immature human cells engrafted in SCID mice. Science. 1992;255(5048):1137–1141. - PubMed
-
- McCune JM, Namikawa R, Kaneshima H, Shultz LD, Lieberman M, Weissman IL. The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function. Science. 1988;241(4873):1632–1639. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources