Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Oct;15(10):8139-43.
doi: 10.1166/jnn.2015.11263.

Nickel Oxide Nanoparticles Doped Liquid Crystal System for Superior Electro-Optical Properties

Nickel Oxide Nanoparticles Doped Liquid Crystal System for Superior Electro-Optical Properties

Hak Moo Lee et al. J Nanosci Nanotechnol. 2015 Oct.

Abstract

We examined the properties of nematic liquid crystal (N-LC) systems with dispersed nickel oxide nanoparticles (NPs). Uniform LC alignments with regular pretilt angles were achieved on rubbed polymer surface regardless of NiO nanoparticles concentration. We confirmed the electro-optical characteristics of twisted nematic (TN) cells containing NiO nanoparticles on rubbed polymer surface, which exhibited lower threshold voltages and faster response times with less capacitance hysteresis than pure LC cells. It is clear that the response time of TN cells on rubbed polymer surfaces decreases with increasing the NiO nanoparticles concentration. These results demonstrate the relationship between NP doping concentration and trapping of impurity ions, and were confirmed by a software simulation of electric flux and field density. NiO nanoparticles in the LC cells focused the electric field flux and strengthened the electric field. Further, NiO nanoparticles in LC medium trapped charged ionic impurities and suppressed the screen effect, leading to a stronger electric field and the van der Waals interactions between LC molecules and the alignment layers.

PubMed Disclaimer

LinkOut - more resources