Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Nov;15(11):8617-21.
doi: 10.1166/jnn.2015.11482.

Preparation of β-Cyclodextrin Multi-Decorated Halloysite Nanotubes as a Catalyst and Nanoadsorbent for Dye Removal

Preparation of β-Cyclodextrin Multi-Decorated Halloysite Nanotubes as a Catalyst and Nanoadsorbent for Dye Removal

Xuan Thang Cao et al. J Nanosci Nanotechnol. 2015 Nov.

Abstract

Hybrid materials of β-cyclodextrin multi-decorated halloysite nanotubes (HNTs-g-βCD) were prepared by a facile route, which showed high efficiency for catalysis and dye adsorption. Initially, the surface of halloysite nanotubes (HNTs) was modified with poly(glycidyl methacrylate) by the reversible addition fragmentation chain transfer (RAFT) polymerization of glycidyl methacrylate having epoxy groups as a monomer. Subsequently, β-cyclodextrin was conjugated with the modified HNTs to produce HNTs-g-βCD by the epoxide ring-opening reaction of mono-6-deoxy-6-hexanediamine-β-cyclodextrin. The nanocomposites were characterized by FT-IR, TGA, SEM, and TEM. The HNTs-g-βCD composites could be used as a nano adsorbent for methylene blue and a catalyst in the oxidation reaction of benzyl alcohol owing to the unique structure of β-cyclodextrin. The HNTs-g-βCD shows promiseas potential multi-functional materials by a combination of β-cyclodextrin and HNTs properties.

PubMed Disclaimer

Publication types