Doping silicon nanocrystals and quantum dots
- PMID: 26727507
- DOI: 10.1039/c5nr04978d
Doping silicon nanocrystals and quantum dots
Abstract
The ability to incorporate a dopant element into silicon nanocrystals (NC) and quantum dots (QD) is one of the key technical challenges for the use of these materials in a number of optoelectronic applications. Unlike doping of traditional bulk semiconductor materials, the location of the doping element can be either within the crystal lattice (c-doping), on the surface (s-doping) or within the surrounding matrix (m-doping). A review of the various synthetic strategies for doping silicon NCs and QDs is presented, concentrating on the efficacy of the synthetic routes, both in situ and post synthesis, with regard to the structural location of the dopant and the doping level. Methods that have been applied to the characterization of doped NCs and QDs are summarized with regard to the information that is obtained, in particular to provide researchers with a guide to the suitable techniques for determining dopant concentration and location, as well as electronic and photonic effectiveness of the dopant.
Similar articles
-
Rational Codoping as a Strategy to Improve Optical Properties of Doped Semiconductor Quantum Dots.J Phys Chem Lett. 2014 Nov 6;5(21):3694-700. doi: 10.1021/jz501739v. Epub 2014 Oct 14. J Phys Chem Lett. 2014. PMID: 26278738
-
Quantized Electronic Doping towards Atomically Controlled "Charge-Engineered" Semiconductor Nanocrystals.Nano Lett. 2019 Feb 13;19(2):1307-1317. doi: 10.1021/acs.nanolett.8b04904. Epub 2019 Jan 29. Nano Lett. 2019. PMID: 30663314
-
Controlled doping of silicon nanocrystals investigated by solution-processed field effect transistors.ACS Nano. 2014 Jun 24;8(6):5650-6. doi: 10.1021/nn500182b. Epub 2014 May 27. ACS Nano. 2014. PMID: 24832958
-
Silicon Nanocrystals and Silicon-Polymer Hybrids: Synthesis, Surface Engineering, and Applications.Angew Chem Int Ed Engl. 2016 Feb 12;55(7):2322-39. doi: 10.1002/anie.201506065. Epub 2015 Nov 26. Angew Chem Int Ed Engl. 2016. PMID: 26607409 Review.
-
Frontier challenges in doping quantum dots: synthesis and characterization.RSC Adv. 2018 Jun 18;8(39):22103-22112. doi: 10.1039/c8ra03530j. eCollection 2018 Jun 13. RSC Adv. 2018. PMID: 35541736 Free PMC article. Review.
Cited by
-
Enhanced Electroluminescence from a Silicon Nanocrystal/Silicon Carbide Multilayer Light-Emitting Diode.Nanomaterials (Basel). 2023 Mar 20;13(6):1109. doi: 10.3390/nano13061109. Nanomaterials (Basel). 2023. PMID: 36986003 Free PMC article.
-
Transition-Metal-Doped NIR-Emitting Silicon Nanocrystals.Angew Chem Int Ed Engl. 2017 May 22;56(22):6157-6160. doi: 10.1002/anie.201700436. Epub 2017 Apr 4. Angew Chem Int Ed Engl. 2017. PMID: 28374522 Free PMC article.
-
Nanomaterial-Based Dual-Emission Ratiometric Fluorescent Sensors for Biosensing and Cell Imaging.Polymers (Basel). 2021 Jul 31;13(15):2540. doi: 10.3390/polym13152540. Polymers (Basel). 2021. PMID: 34372142 Free PMC article. Review.
-
Strain engineering of doped hydrogen passivated silicon quantum dots.Sci Rep. 2025 Jun 6;15(1):19909. doi: 10.1038/s41598-025-04532-0. Sci Rep. 2025. PMID: 40481068 Free PMC article.
-
Feasibility of Silicon Quantum Dots as a Biomarker for the Bioimaging of Tear Film.Nanomaterials (Basel). 2022 Jun 8;12(12):1965. doi: 10.3390/nano12121965. Nanomaterials (Basel). 2022. PMID: 35745304 Free PMC article.
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources