Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Feb;107(1):4-20.
doi: 10.1002/bdrb.21168. Epub 2016 Jan 5.

A Developmental Toxicology Assay Platform for Screening Teratogenic Liability of Pharmaceutical Compounds

Affiliations

A Developmental Toxicology Assay Platform for Screening Teratogenic Liability of Pharmaceutical Compounds

Karen Augustine-Rauch et al. Birth Defects Res B Dev Reprod Toxicol. 2016 Feb.

Abstract

Increasing need for proactive safety optimization of pharmaceutical compounds has led to generation and/or refinement of in vitro developmental toxicology assays. Our laboratory has developed three in vitro developmental toxicology assays to assess teratogenic liability of pharmaceutical compounds. These assays included a mouse molecular embryonic stem cell assay (MESCA), a dechorionated zebrafish embryo culture (ZEC) assay, and a streamlined rat whole embryo culture (rWEC) assay. Individually, the assays presented good (73-82%) predictivity. However, it remains to be determined whether combining or tiering the assays could enhance performance. Seventy-three compounds representing a broad spectrum of pharmaceutical targets and chemistry were evaluated across the assays to generate testing strategies that optimized performance. The MESCA and ZEC assays were found to have two limitations: compound solubility and frequent misclassification of compounds with H1 receptor or GABAnergic activity. The streamlined rWEC assay was found to be a cost-effective stand-alone assay for supporting poorly soluble compounds and/or ones with H1 or GABAnergic activity. For all other compounds, a tiering strategy using the MESCA and ZEC assays additionally optimized throughput, cost, and minimized animal use. The tiered strategy resulted in improved performance achieving 88% overall predictivity and was comparable with 89% overall predictivity achieved with frequency analysis (final teratogenic classification made from most frequent teratogenic classification from each individual assay). Furthermore there were 21 compounds in the test set characterized as definitive or suspect human teratogens and the multiassay approach achieved 95 and 91% correct classification using the tiered or frequency screening approach, respectively.

Keywords: developmental toxicology assays; in vitro; prediction models; teratogenic classification; tiered screens.

PubMed Disclaimer

Publication types

LinkOut - more resources