Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Mar:128:44-53.
doi: 10.1016/j.neuroimage.2015.12.035. Epub 2015 Dec 28.

Representational similarity encoding for fMRI: Pattern-based synthesis to predict brain activity using stimulus-model-similarities

Affiliations

Representational similarity encoding for fMRI: Pattern-based synthesis to predict brain activity using stimulus-model-similarities

Andrew James Anderson et al. Neuroimage. 2016 Mar.

Abstract

Patterns of neural activity are systematically elicited as the brain experiences categorical stimuli and a major challenge is to understand what these patterns represent. Two influential approaches, hitherto treated as separate analyses, have targeted this problem by using model-representations of stimuli to interpret the corresponding neural activity patterns. Stimulus-model-based-encoding synthesizes neural activity patterns by first training weights to map between stimulus-model features and voxels. This allows novel model-stimuli to be mapped into voxel space, and hence the strength of the model to be assessed by comparing predicted against observed neural activity. Representational Similarity Analysis (RSA) assesses models by testing how well the grand structure of pattern-similarities measured between all pairs of model-stimuli aligns with the same structure computed from neural activity patterns. RSA does not require model fitting, but also does not allow synthesis of neural activity patterns, thereby limiting its applicability. We introduce a new approach, representational similarity-encoding, that builds on the strengths of RSA and robustly enables stimulus-model-based neural encoding without model fitting. The approach therefore sidesteps problems associated with overfitting that notoriously confront any approach requiring parameter estimation (and is consequently low cost computationally), and importantly enables encoding analyses to be incorporated within the wider Representational Similarity Analysis framework. We illustrate this new approach by using it to synthesize and decode fMRI patterns representing the meanings of words, and discuss its potential biological relevance to encoding in semantic memory. Our new similarity-based encoding approach unites the two previously disparate methods of encoding models and RSA, capturing the strengths of both, and enabling similarity-based synthesis of predicted fMRI patterns.

Keywords: Decoding; Encoding; Representational Similarity Analysis; Semantic memory; Semantic model; fMRI.

PubMed Disclaimer

Publication types

LinkOut - more resources