Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Multicenter Study
. 2016 Jan 6;10(1):e0004307.
doi: 10.1371/journal.pntd.0004307. eCollection 2016 Jan.

Evaluation in Cameroon of a Novel, Simplified Methodology to Assist Molecular Microbiological Analysis of V. cholerae in Resource-Limited Settings

Affiliations
Multicenter Study

Evaluation in Cameroon of a Novel, Simplified Methodology to Assist Molecular Microbiological Analysis of V. cholerae in Resource-Limited Settings

Amanda K Debes et al. PLoS Negl Trop Dis. .

Erratum in

Abstract

Background: Vibrio cholerae is endemic in South Asia and Africa where outbreaks of cholera occur widely and are particularly associated with poverty and poor sanitation. Knowledge of the genetic diversity of toxigenic V. cholerae isolates, particularly in Africa, remains scarce. The constraints in improving this understanding is not only the lack of regular cholera disease surveillance, but also the lack of laboratory capabilities in endemic countries to preserve, store and ship isolates in a timely manner. We evaluated the use of simplified sample preservation methods for molecular characterization using multi-locus variable-number tandem-repeat analysis (MLVA) for differentiation of Vibrio cholerae genotypes.

Methods and findings: Forty-seven V. cholerae isolates and 18 enriched clinical specimens (e.g. stool specimens after enrichment in broth) from cholera outbreaks in Cameroon were preserved on Whatman filter paper for DNA extraction. The samples were collected from two geographically distinct outbreaks in the Far North of Cameroon (FNC) in June 2014 and October 2014. In addition, a convenience sample of 14 isolates from the Philippines and 8 from Mozambique were analyzed. All 87 DNAs were successfully analyzed including 16 paired samples, one a cultured isolate and the other the enriched specimen from which the isolate was collected. Genotypic results were identical between 15 enriched specimens and their culture isolates and the other pair differed at single locus. Two closely related, but distinct clonal complexes were identified among the Cameroonian specimens from 2014.

Conclusions: Collecting V. cholerae using simplified laboratory methods in remote and low-resource settings allows for subsequent advanced molecular characterization of V. cholerae O1. These simplified DNA preservation methods identify V. cholerae and make possible timely information regarding the genetic diversity of V. cholerae; our results set the stage for continued molecular epidemiological research to better understand the transmission and dissemination of V. cholerae in Africa and elsewhere worldwide.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. Map of field sites, Far North Cameroon.
Clinical isolates from Mozambique were collected from children under five years of age presenting with moderate-to-severe diarrhea.[14]. Clinical isolates from the Philippines were collected during routine surveillance efforts in the national health system. Specimens were collected, tested and confirmed for cholera via classical methods.
Fig 2
Fig 2. A. Clonal Complex 1. B. Clonal Complex 3. C. Clonal Complexes 2, 4 & 5.

References

    1. Chatterjee SN, Chaudhuri K (2003) Lipopolysaccharides of Vibrio cholerae. I. Physical and chemical characterization. Biochim Biophys Acta 1639: 65–79. - PubMed
    1. Chen Y, Johnson JA, Pusch GD, Morris JG Jr., Stine OC (2007) The genome of non-O1 Vibrio cholerae NRT36S demonstrates the presence of pathogenic mechanisms that are distinct from those of O1 Vibrio cholerae. Infect Immun 75: 2645–2647. - PMC - PubMed
    1. Kendall EA, Chowdhury F, Begum Y, Khan AI, Li S, et al. (2010) Relatedness of Vibrio cholerae O1/O139 isolates from patients and their household contacts, determined by multilocus variable-number tandem-repeat analysis. J Bacteriol 192: 4367–4376. 10.1128/JB.00698-10 - DOI - PMC - PubMed
    1. Danin-Poleg Y, Cohen LA, Gancz H, Broza YY, Goldshmidt H, et al. (2007) Vibrio cholerae strain typing and phylogeny study based on simple sequence repeats. J Clin Microbiol 45: 736–746. - PMC - PubMed
    1. Rebaudet S, Mengel MA, Koivogui L, Moore S, Mutreja A, et al. (2014) Deciphering the origin of the 2012 cholera epidemic in Guinea by integrating epidemiological and molecular analyses. PLoS Negl Trop Dis 8: e2898 10.1371/journal.pntd.0002898 - DOI - PMC - PubMed

Publication types