Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Jan 6:35:4.
doi: 10.1186/s40880-015-0066-y.

Molecular pathogenesis of sporadic colorectal cancers

Affiliations
Review

Molecular pathogenesis of sporadic colorectal cancers

Hidetsugu Yamagishi et al. Chin J Cancer. .

Abstract

Colorectal cancer (CRC) results from the progressive accumulation of genetic and epigenetic alterations that lead to the transformation of normal colonic mucosa to adenocarcinoma. Approximately 75% of CRCs are sporadic and occur in people without genetic predisposition or family history of CRC. During the past two decades, sporadic CRCs were classified into three major groups according to frequently altered/mutated genes. These genes have been identified by linkage analyses of cancer-prone families and by individual mutation analyses of candidate genes selected on the basis of functional data. In the first half of this review, we describe the genetic pathways of sporadic CRCs and their clinicopathologic features. Recently, large-scale genome analyses have detected many infrequently mutated genes as well as a small number of frequently mutated genes. These infrequently mutated genes are likely described in a limited number of pathways. Gene-oriented models of CRC progression are being replaced by pathway-oriented models. In the second half of this review, we summarize the present knowledge of this research field and discuss its prospects.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Evolutional pathways for colorectal morphogenesis. The traditional pathway is the most homogenous pathway, originating from tubular adenoma (via adenomatous polyposis coli (APC) and subsequently Kirsten rat sarcoma viral oncogene homolog (KRAS) mutation) and leading to adenocarcinoma [via tumor protein 53 (TP53) mutation]. This pathway is characterized by chromosomal instability (CIN), negative CpG island methylator phenotype (CIMP), and average outcome. The serrated pathway is also the most homogenous pathway, originating from sessile serrated adenoma/polyps (SSA/P) via B-Raf proto-oncogene, serine/threonine kinase (BRAF) mutation and CIMP-high (CIMP-H) and leading to adenocarcinoma via MutL homolog 1 (MLH1) promoter methylation and microsatellite instability-high (MSI-H). This pathway is characterized by good prognosis. The alternative pathway is more heterogeneous and may arise mostly from villous adenoma and perhaps also from SSA/P and traditional serrated adenoma (TSA) via CIMP-low (CIMP-L) and predominant KRAS but occasional BRAF mutations. This pathway lacks CIN and has the worse prognosis with low responsiveness to chemotherapy. The de novo cancers usually lack KRAS mutation but are significantly associated with TP53 and APC mutations and also loss of heterozygosity (LOH) at chromosome 3p (chr 3p). EMT epithelial-mesenchymal transition, TGF-β transforming growth factor-β, MSI-L MSI-low. A part of this figure was reproduced from figure 1 in Patholog Res Int 2012;2012:509348 authored by Pancione et al. [42], with permission
Fig. 2
Fig. 2
Representative histological figures of polyps, adenoma, and carcinoma of the colon and rectum (hematoxylin and eosin stain). a hyperplastic polyp. b sessile serrated adenoma/polyp. c tubular adenoma. d villous adenoma. e traditional serrated adenoma. f adenocarcinoma

References

    1. World Cancer Research Fund/American Institute for Cancer Research . Food, nutrition, physical activity, and the prevention of cancer: a global perspective. Washington, DC: AICR; 2007. pp. 280–288.
    1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108. doi: 10.3322/caac.21262. - DOI - PubMed
    1. Rustgi AK. The genetics of hereditary colon cancer. Genes Dev. 2007;21:2525–2538. doi: 10.1101/gad.1593107. - DOI - PubMed
    1. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61:759–767. doi: 10.1016/0092-8674(90)90186-I. - DOI - PubMed
    1. Smith G, Carey FA, Beattie J, Wilkie MJ, Lightfoot TJ, Coxhead J, et al. Mutations in APC, Kirsten-ras, and p53-alternative genetic pathways to colorectal cancer. Proc Natl Acad Sci USA. 2002;99:9433–9438. doi: 10.1073/pnas.122612899. - DOI - PMC - PubMed