Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2016 May;11(5):610-23.
doi: 10.1002/biot.201400663. Epub 2016 Feb 12.

Dynamics of immature mAb glycoform secretion during CHO cell culture: An integrated modelling framework

Affiliations
Comparative Study

Dynamics of immature mAb glycoform secretion during CHO cell culture: An integrated modelling framework

Ioscani Jimenez Del Val et al. Biotechnol J. 2016 May.

Abstract

Ensuring consistent glycosylation-associated quality of therapeutic monoclonal antibodies (mAbs) has become a priority in pharmaceutical bioprocessing given that the distribution and composition of the carbohydrates (glycans) bound to these molecules determines their therapeutic efficacy and immunogenicity. However, the interaction between bioprocess conditions, cellular metabolism and the intracellular process of glycosylation remains to be fully understood. To gain further insight into these interactions, we present a novel integrated modelling platform that links dynamic variations in mAb glycosylation with cellular secretory capacity. Two alternative mechanistic representations of how mAb specific productivity (qp ) influences glycosylation are compared. In the first, mAb glycosylation is modulated by the linear velocity with which secretory cargo traverses the Golgi apparatus. In the second, glycosylation is influenced by variations in Golgi volume. Within our modelling framework, both mechanisms accurately reproduce experimentally-observed dynamic changes in mAb glycosylation. In addition, an optimisation-based strategy has been developed to estimate the concentration of glycosylation enzymes required to minimise mAb glycoform variability. Our results suggest that the availability of glycosylation machinery relative to cellular secretory capacity may play a crucial role in mAb glycosylation. In the future, the modelling framework presented here may aid in selecting and engineering cell lines that ensure consistent mAb glycosylatio.

Keywords: CHO cells; Dynamic glycosylation model; In silico glycoengineering; Pharmaceutical bioprocessing; Therapeutic protein glycosylation.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources