Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Oct;29(5):393-405.
doi: 10.1089/jamp.2015.1233. Epub 2016 Jan 8.

Inhalation Study of Mycobacteriophage D29 Aerosol for Mice by Endotracheal Route and Nose-Only Exposure

Affiliations

Inhalation Study of Mycobacteriophage D29 Aerosol for Mice by Endotracheal Route and Nose-Only Exposure

Ke-Yang Liu et al. J Aerosol Med Pulm Drug Deliv. 2016 Oct.

Abstract

Background: Lytic mycobacteriophage D29 has the potential for tuberculosis treatment including multidrug-resistant strains. The aims of this study are to investigate deposition and distribution of aerosolized phage D29 particles in naive Balb/C mice, together with pharmacokinetics and evaluation of acute lung injury.

Methods: Pharmacokinetics and BALF (bronchoalveolar lavage fluids) were analyzed after administration of phage D29 aerosols by endotracheal route using Penn-century aerosolizer; Collison 6-jet and Spinning top aerosol nebulizers (STAG) were used to generate phage aerosols with different particle size distributions in nose-only inhalation experiments. After exposure, deposited amounts of phage D29 particles in respiratory tracts were measured, and deposition efficiencies were calculated. A typical path deposition model for mice was developed, and then comparisons were made between predictions and experimentally measured results.

Results: Approximately 10% of aerosolized phages D29 reached lung of mouse for pulmonary delivery, and were completely eliminated until 72 h after administration. In contrast, about 0.1% of intraperitoneal injected phages reached the lung, and were almost eliminated at 12 h time point. The inflammation was hardly observed in lung according to the results of BALF analysis. The CMADs (count median aerodynamic diameters) of generated aerosol by Collison and STAG nebulizer were 0.8 μm and 1.5 μm, respectively. After nose-only exposure, measured deposition efficiencies in whole respiratory tract for 0.8 and 1.5 μm phage particles were below 1% and 10%, respectively. Predictions of the computer deposition model compared fairly well with experimentally measured results.

Conclusions: This is the first systematic study of phage D29 aerosol respiratory challenge in laboratory animals. It provides evidence that aerosol delivery of phage D29 is an effective way for treating pulmonary infections caused by Mycobacterium tuberculosis. This research will also provide important data for future inhalation experiments.

Keywords: D29; aerosol inhalation; computer model; deposition efficiency; mycobacteriophage; nose-only exposure; pulmonary delivery; respiratory tract; simulation.

PubMed Disclaimer

LinkOut - more resources