Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Sep;124(9):1462-70.
doi: 10.1289/ehp.1510144. Epub 2016 Jan 8.

Estimating Children's Soil/Dust Ingestion Rates through Retrospective Analyses of Blood Lead Biomonitoring from the Bunker Hill Superfund Site in Idaho

Affiliations

Estimating Children's Soil/Dust Ingestion Rates through Retrospective Analyses of Blood Lead Biomonitoring from the Bunker Hill Superfund Site in Idaho

Ian von Lindern et al. Environ Health Perspect. 2016 Sep.

Abstract

Background: Soil/dust ingestion rates are important variables in assessing children's health risks in contaminated environments. Current estimates are based largely on soil tracer methodology, which is limited by analytical uncertainty, small sample size, and short study duration.

Objectives: The objective was to estimate site-specific soil/dust ingestion rates through reevaluation of the lead absorption dose-response relationship using new bioavailability data from the Bunker Hill Mining and Metallurgical Complex Superfund Site (BHSS) in Idaho, USA.

Methods: The U.S. Environmental Protection Agency (EPA) in vitro bioavailability methodology was applied to archived BHSS soil and dust samples. Using age-specific biokinetic slope factors, we related bioavailable lead from these sources to children's blood lead levels (BLLs) monitored during cleanup from 1988 through 2002. Quantitative regression analyses and exposure assessment guidance were used to develop candidate soil/dust source partition scenarios estimating lead intake, allowing estimation of age-specific soil/dust ingestion rates. These ingestion rate and bioavailability estimates were simultaneously applied to the U.S. EPA Integrated Exposure Uptake Biokinetic Model for Lead in Children to determine those combinations best approximating observed BLLs.

Results: Absolute soil and house dust bioavailability averaged 33% (SD ± 4%) and 28% (SD ± 6%), respectively. Estimated BHSS age-specific soil/dust ingestion rates are 86-94 mg/day for 6-month- to 2-year-old children and 51-67 mg/day for 2- to 9-year-old children.

Conclusions: Soil/dust ingestion rate estimates for 1- to 9-year-old children at the BHSS are lower than those commonly used in human health risk assessment. A substantial component of children's exposure comes from sources beyond the immediate home environment.

Citation: von Lindern I, Spalinger S, Stifelman ML, Stanek LW, Bartrem C. 2016. Estimating children's soil/dust ingestion rates through retrospective analyses of blood lead biomonitoring from the Bunker Hill Superfund Site in Idaho. Environ Health Perspect 124:1462-1470; http://dx.doi.org/10.1289/ehp.1510144.

PubMed Disclaimer

Conflict of interest statement

This manuscript was reviewed by the U.S. EPA and approved for publication. Views expressed by the authors do not necessarily represent the U.S. EPA or agency policy. I.v.L., S.S., and C.B. are employees of TerraGraphics Environmental Engineering, Inc., which is a consultant to the Idaho Department of Environmental Quality, and held two contracts at the time of this project for scientific and engineering support services for the Bunker Hill Superfund Site. TerraGraphics was also a consultant to U.S. EPA to conduct analyses for this research project. I.v.L. served on the U.S. Clean Air Science Advisory Committee for the Integrated Science Assessment for Lead in the Ambient Air and the Review of the Air Quality Criteria Document for Lead. C.B. and I.v.L. are also employed by TerraGraphics International Foundation, a nonprofit organization. The other authors declare they have no actual or potential competing financial interests.

Figures

Figure 1
Figure 1
Arithmetic and geometric mean age-specific soil/dust ingestion rates (IRs) for four soil/dust partition scenarios. Included are current Integrated Exposure Uptake Biokinetic (IEUBK) model IRs and calculated age-specific mean soil/dust IRs for the four partition scenarios. For each age (6 months–9 years), arithmetic mean IRs (aveIR) and geometric mean IRs (geoIR) are shown. 55/45 is the partition of dust/yard soil, 40/30/30 is the partition of dust/yard/community soil, and SEM 50/25/10/15 is the partition of dust/yard/neighborhood/community soil. Corresponding numeric data, with 95% CI and percentile distributions for each model and age, are provided in Table S1.
Figure 2
Figure 2
Observed and predicted geometric mean blood lead levels (BLLs) by year for four scenarios that best predict observed BLLs. Predicted geometric mean BLLs for the four scenarios are compared with observed BLLs from 1988 through 2002. Observed BLLs include error bars for the 95% confidence interval (CI). Abbreviations: aveIR, arithmetic mean ingestion rate; geoIR, geometric mean ingestion rate. 55/45 is the partition of dust/yard soil, 40/30/30 is the partition of dust/yard/community soil, and SEM 50/25/10/15 is the partition of dust/yard/neighborhood/community soil. Corresponding numeric data, with 95% CI and percentile distributions for each model and age, are provided in Table S1.
Figure 3
Figure 3
Mean age-specific ingestion rates (IRs) with 95% confidence intervals (CI) for the structural equations modeling (SEM) partition scenario. SEM 50/25/10/15 partition scenario (of dust/yard/neighborhood/community soil) with arithmetic mean IRs (aveIR) for ages 6 months–9 years, including 95% CI, are compared with current Integrated Exposure Uptake Biokinetic (IEUBK) model IRs and Exposure Factors Handbook IRs (ages 6 months–6 years only) (U.S. EPA 1994, 2011).

Similar articles

Cited by

References

    1. Batelle. Summary Report of the U.S. EPA Colloquium on Soil/Dust Ingestion Rates and Mouthing Behavior for Children and Adults. 2005 Available: http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=146585#Download [accessed 13 January 2015]
    1. Bierkens J, Van Holderbeke M, Cornelis C, Torfs R. In: Dealing with Contaminated Sites: from Theory towards Practical Application. (Swartjes FA, ed) Dordrecht, the Netherlands: Springer Science+Business Media B.V.; 2011. Exposure through soil and dust ingestion. pp. 261–286.
    1. Carey G. Path Analysis Using PROC CALIS. 1998 Available: http://psych.colorado.edu/~carey/courses/psyc7291/handouts/pathcalis.pdf [accessed 13 January 2015]
    1. CDC (Centers for Disease Control and Prevention) Blood lead levels in children aged 1–5 years — United States, 1999–2010. MMWR Morb Mortal Wkly Rep. 2013;62:245–248. - PMC - PubMed
    1. CH2M Hill. Seattle, WA: U.S. EPA Region 10 Office; 1991. Residential Soil Feasibility Study for the Bunker Hill CERCLA Site Populated Areas. Prepared for the Idaho Division of Environmental Quality, Boise, ID. Document Number BHPA-RSFS-F-RO-041991.

Publication types

MeSH terms

LinkOut - more resources