Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Jan 11;11(1):e0146643.
doi: 10.1371/journal.pone.0146643. eCollection 2016.

Human Gut Bacteria Are Sensitive to Melatonin and Express Endogenous Circadian Rhythmicity

Affiliations

Human Gut Bacteria Are Sensitive to Melatonin and Express Endogenous Circadian Rhythmicity

Jiffin K Paulose et al. PLoS One. .

Abstract

Circadian rhythms are fundamental properties of most eukaryotes, but evidence of biological clocks that drive these rhythms in prokaryotes has been restricted to Cyanobacteria. In vertebrates, the gastrointestinal system expresses circadian patterns of gene expression, motility and secretion in vivo and in vitro, and recent studies suggest that the enteric microbiome is regulated by the host's circadian clock. However, it is not clear how the host's clock regulates the microbiome. Here, we demonstrate at least one species of commensal bacterium from the human gastrointestinal system, Enterobacter aerogenes, is sensitive to the neurohormone melatonin, which is secreted into the gastrointestinal lumen, and expresses circadian patterns of swarming and motility. Melatonin specifically increases the magnitude of swarming in cultures of E. aerogenes, but not in Escherichia coli or Klebsiella pneumoniae. The swarming appears to occur daily, and transformation of E. aerogenes with a flagellar motor-protein driven lux plasmid confirms a temperature-compensated circadian rhythm of luciferase activity, which is synchronized in the presence of melatonin. Altogether, these data demonstrate a circadian clock in a non-cyanobacterial prokaryote and suggest the human circadian system may regulate its microbiome through the entrainment of bacterial clocks.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. Swarming behavior in E. aerogenes is induced by melatonin and occurs with a circadian frequency.
A Swarming behavior in control treated (left cultures vs. treatment with 1nM melatonin (right. Images were equally enhanced using “Bump Map” in GIMP software to highlight banding patterns. B The increase in swarming was only seen at 100pM and 1nM concentrations of melatonin, * = p value < 0.001 compared to vehicle treated cultures, n = 16 cultures per treatment. C Period of swarming as calculated by the number of rings observed per culture period of 4 days in n = 16 cultures per treatment, * = p value < 0.001. D Area of bacterial spread was unaffected by tryptophan (left, serotonin (middle and N-acetylserotonin (right, n = 16 cultures per treatment. E Melatonin did not affect growth in K. pneumoniae (left or clinical or lab strains of E. coli (middle and right, respectively, n = 16 cultures per strain per treatment.
Fig 2
Fig 2. Neither lab nor clinical strains of E. coli nor K. pneumoniae show swarming response to other indoles.
Cultures of clinical isolates of E. coli (left panels, DH5-α (middle panels, and K. pneumoniae (right panels were tested for swarming/growth in the presence of tryptophan (top row, serotonin (middle row, and N-acetylserotonin (bottom row, n = 16 cultures per strain per treatment.
Fig 3
Fig 3. Bioluminescence recording of MotA::luxcdabe transformed E. aerogenes confirms a temperature compensated circadian rhythm.
A) Normalized bioluminescence rhythms from control-treated (top panels) and melatonin-treated (bottom panels) cultures show circadian rhythms at (from left to right) 27° (n = 5/treatment), 34° (n = 5/treatment), 37° (n = 5 control and 7 melatonin-treated) and 40° (n = 6 control and 6 melatonin-treated). Time scales represent days after plates were inoculated with bacteria, which varied in the amount of time needed to stabilize and begin outgrowth. B) Periodogram analysis-derived peak phases of rhythmic cultures from (A) reveal that control-treated cultures (white circles) show greater variation in peak phase than melatonin-treated cultures (black circles), which are more synchronized at all three temperatures. C) Periods of rhythms varied between 22 and 28 hours among temperature and melatonin treatments, but were not significantly affected by temperature or melatonin.
Fig 4
Fig 4. The data presented here show that a clinical isolate of E. aerogenes expresses a circadian rhythm in MotA expression and displays a swarming response to melatonin in a dose- and temperature-dependent manner.

References

    1. Bell-Pedersen D, Cassone VM, Earnest DJ, Golden SS, Hardin PE, Thomas TL, et al. Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nat Rev Genet [Internet]. 2005/06/14 ed. 2005. July [cited 2013 Jun 27];6(7):544–56. Available: http://www.ncbi.nlm.nih.gov/pubmed/15951747. Accessed 27 June 2013. - PMC - PubMed
    1. Johnson CH, Mori T, Xu Y. A cyanobacterial circadian clockwork. Curr Biol [Internet]. 2008. September 9 [cited 2015 Jan 29];18(17):R816–25. Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2585598&tool=p.... Accessed 29 January 2015. 10.1016/j.cub.2008.07.012 - DOI - PMC - PubMed
    1. Mackey SR, Golden SS, Ditty JL. The itty-bitty time machine genetics of the cyanobacterial circadian clock. Adv Genet [Internet]. 2011. January [cited 2015 Jan 29];74:13–53. Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3319097&tool=p.... Accessed 29 January 2015. 10.1016/B978-0-12-387690-4.00002-7 - DOI - PMC - PubMed
    1. Kitayama Y, Iwasaki H, Nishiwaki T, Kondo T. KaiB functions as an attenuator of KaiC phosphorylation in the cyanobacterial circadian clock system. EMBO J [Internet]. 2003. May 1 [cited 2015 Jan 8];22(9):2127–34. Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=156084&tool=pm.... Accessed 8 January 2015. - PMC - PubMed
    1. Nakajima M, Imai K, Ito H, Nishiwaki T, Murayama Y, Iwasaki H, et al. Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. Science [Internet]. 2005. April 15 [cited 2015 Feb 25];308(5720):414–5. Available: http://www.ncbi.nlm.nih.gov/pubmed/15831759. Accessed 25 February 2015. - PubMed

Publication types