Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2016 Oct;21(10):1391-9.
doi: 10.1038/mp.2015.197. Epub 2016 Jan 12.

Meta-analysis of genome-wide association studies of anxiety disorders

Affiliations
Meta-Analysis

Meta-analysis of genome-wide association studies of anxiety disorders

T Otowa et al. Mol Psychiatry. 2016 Oct.

Erratum in

  • Meta-analysis of genome-wide association studies of anxiety disorders.
    Otowa T, Hek K, Lee M, Byrne EM, Mirza SS, Nivard MG, Bigdeli T, Aggen SH, Adkins D, Wolen A, Fanous A, Keller MC, Castelao E, Kutalik Z, der Auwera SV, Homuth G, Nauck M, Teumer A, Milaneschi Y, Hottenga JJ, Direk N, Hofman A, Uitterlinden A, Mulder CL, Henders AK, Medland SE, Gordon S, Heath AC, Madden PA, Pergadia ML, van der Most PJ, Nolte IM, van Oort FV, Hartman CA, Oldehinkel AJ, Preisig M, Grabe HJ, Middeldorp CM, Penninx BW, Boomsma D, Martin NG, Montgomery G, Maher BS, van den Oord EJ, Wray NR, Tiemeier H, Hettema JM. Otowa T, et al. Mol Psychiatry. 2016 Oct;21(10):1485. doi: 10.1038/mp.2016.11. Epub 2016 Feb 9. Mol Psychiatry. 2016. PMID: 26857599 No abstract available.

Abstract

Anxiety disorders (ADs), namely generalized AD, panic disorder and phobias, are common, etiologically complex conditions with a partially genetic basis. Despite differing on diagnostic definitions based on clinical presentation, ADs likely represent various expressions of an underlying common diathesis of abnormal regulation of basic threat-response systems. We conducted genome-wide association analyses in nine samples of European ancestry from seven large, independent studies. To identify genetic variants contributing to genetic susceptibility shared across interview-generated DSM-based ADs, we applied two phenotypic approaches: (1) comparisons between categorical AD cases and supernormal controls, and (2) quantitative phenotypic factor scores (FS) derived from a multivariate analysis combining information across the clinical phenotypes. We used logistic and linear regression, respectively, to analyze the association between these phenotypes and genome-wide single nucleotide polymorphisms. Meta-analysis for each phenotype combined results across the nine samples for over 18 000 unrelated individuals. Each meta-analysis identified a different genome-wide significant region, with the following markers showing the strongest association: for case-control contrasts, rs1709393 located in an uncharacterized non-coding RNA locus on chromosomal band 3q12.3 (P=1.65 × 10(-8)); for FS, rs1067327 within CAMKMT encoding the calmodulin-lysine N-methyltransferase on chromosomal band 2p21 (P=2.86 × 10(-9)). Independent replication and further exploration of these findings are needed to more fully understand the role of these variants in risk and expression of ADs.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflicts of interest.

Figures

Figure 1
Figure 1
Quantile-quantile plots of meta-analysis results for (a) case-control and (b) factor score phenotypes. Observed association results of −log10P , after LD-pruning at r2 of 0.4, are plotted against the expected distribution under the null hypothesis of no association.
Figure 1
Figure 1
Quantile-quantile plots of meta-analysis results for (a) case-control and (b) factor score phenotypes. Observed association results of −log10P , after LD-pruning at r2 of 0.4, are plotted against the expected distribution under the null hypothesis of no association.
Figure 2
Figure 2
Manhattan plots of meta-analysis results for (a) case-control and (b) factor score phenotypes. Red horizontal line indicates the genome-wide significant p-value 5×10−8; blue line indicates the suggestive p-value=1×10−5.
Figure 2
Figure 2
Manhattan plots of meta-analysis results for (a) case-control and (b) factor score phenotypes. Red horizontal line indicates the genome-wide significant p-value 5×10−8; blue line indicates the suggestive p-value=1×10−5.
Fig 3
Fig 3
Regional plots around most significant SNPs in (a) case-control and (b) factor score model.
Fig 3
Fig 3
Regional plots around most significant SNPs in (a) case-control and (b) factor score model.

Similar articles

  • Genome-wide and gene-based association studies of anxiety disorders in European and African American samples.
    Otowa T, Maher BS, Aggen SH, McClay JL, van den Oord EJ, Hettema JM. Otowa T, et al. PLoS One. 2014 Nov 12;9(11):e112559. doi: 10.1371/journal.pone.0112559. eCollection 2014. PLoS One. 2014. PMID: 25390645 Free PMC article.
  • Genome-wide association study of shared liability to anxiety disorders in Army STARRS.
    Hettema JM, Verhulst B, Chatzinakos C, Bacanu SA, Chen CY, Ursano RJ, Kessler RC, Gelernter J, Smoller JW, He F, Jain S, Stein MB. Hettema JM, et al. Am J Med Genet B Neuropsychiatr Genet. 2020 Jun;183(4):197-207. doi: 10.1002/ajmg.b.32776. Epub 2019 Dec 30. Am J Med Genet B Neuropsychiatr Genet. 2020. PMID: 31886626 Free PMC article.
  • Meta-analysis of Genome-wide Association Studies for Neuroticism, and the Polygenic Association With Major Depressive Disorder.
    Genetics of Personality Consortium; de Moor MH, van den Berg SM, Verweij KJ, Krueger RF, Luciano M, Arias Vasquez A, Matteson LK, Derringer J, Esko T, Amin N, Gordon SD, Hansell NK, Hart AB, Seppälä I, Huffman JE, Konte B, Lahti J, Lee M, Miller M, Nutile T, Tanaka T, Teumer A, Viktorin A, Wedenoja J, Abecasis GR, Adkins DE, Agrawal A, Allik J, Appel K, Bigdeli TB, Busonero F, Campbell H, Costa PT, Davey Smith G, Davies G, de Wit H, Ding J, Engelhardt BE, Eriksson JG, Fedko IO, Ferrucci L, Franke B, Giegling I, Grucza R, Hartmann AM, Heath AC, Heinonen K, Henders AK, Homuth G, Hottenga JJ, Iacono WG, Janzing J, Jokela M, Karlsson R, Kemp JP, Kirkpatrick MG, Latvala A, Lehtimäki T, Liewald DC, Madden PA, Magri C, Magnusson PK, Marten J, Maschio A, Medland SE, Mihailov E, Milaneschi Y, Montgomery GW, Nauck M, Ouwens KG, Palotie A, Pettersson E, Polasek O, Qian Y, Pulkki-Råback L, Raitakari OT, Realo A, Rose RJ, Ruggiero D, Schmidt CO, Slutske WS, Sorice R, Starr JM, St Pourcain B, Sutin AR, Timpson NJ, Trochet H, Vermeulen S, Vuoksimaa E, Widen E, Wouda J, Wright MJ, Zgaga L, Porteous D, Minelli A, Palmer AA, Rujescu D, Ciullo M, Hayward C, Rudan I, Metspalu A, Kaprio J, Deary IJ, R… See abstract for full author list ➔ Genetics of Personality Consortium, et al. JAMA Psychiatry. 2015 Jul;72(7):642-50. doi: 10.1001/jamapsychiatry.2015.0554. JAMA Psychiatry. 2015. PMID: 25993607 Free PMC article.
  • Transethnic Genome-Wide Association Study Provides Insights in the Genetic Architecture and Heritability of Long QT Syndrome.
    Lahrouchi N, Tadros R, Crotti L, Mizusawa Y, Postema PG, Beekman L, Walsh R, Hasegawa K, Barc J, Ernsting M, Turkowski KL, Mazzanti A, Beckmann BM, Shimamoto K, Diamant UB, Wijeyeratne YD, Kucho Y, Robyns T, Ishikawa T, Arbelo E, Christiansen M, Winbo A, Jabbari R, Lubitz SA, Steinfurt J, Rudic B, Loeys B, Shoemaker MB, Weeke PE, Pfeiffer R, Davies B, Andorin A, Hofman N, Dagradi F, Pedrazzini M, Tester DJ, Bos JM, Sarquella-Brugada G, Campuzano Ó, Platonov PG, Stallmeyer B, Zumhagen S, Nannenberg EA, Veldink JH, van den Berg LH, Al-Chalabi A, Shaw CE, Shaw PJ, Morrison KE, Andersen PM, Müller-Nurasyid M, Cusi D, Barlassina C, Galan P, Lathrop M, Munter M, Werge T, Ribasés M, Aung T, Khor CC, Ozaki M, Lichtner P, Meitinger T, van Tintelen JP, Hoedemaekers Y, Denjoy I, Leenhardt A, Napolitano C, Shimizu W, Schott JJ, Gourraud JB, Makiyama T, Ohno S, Itoh H, Krahn AD, Antzelevitch C, Roden DM, Saenen J, Borggrefe M, Odening KE, Ellinor PT, Tfelt-Hansen J, Skinner JR, van den Berg MP, Olesen MS, Brugada J, Brugada R, Makita N, Breckpot J, Yoshinaga M, Behr ER, Rydberg A, Aiba T, Kääb S, Priori SG, Guicheney P, Tan HL, Newton-Cheh C, Ackerman MJ, Schwartz PJ, Schulze-Bahr E, Probst V,… See abstract for full author list ➔ Lahrouchi N, et al. Circulation. 2020 Jul 28;142(4):324-338. doi: 10.1161/CIRCULATIONAHA.120.045956. Epub 2020 May 20. Circulation. 2020. PMID: 32429735 Free PMC article.
  • Genetics of anxiety disorders: Genetic epidemiological and molecular studies in humans.
    Shimada-Sugimoto M, Otowa T, Hettema JM. Shimada-Sugimoto M, et al. Psychiatry Clin Neurosci. 2015 Jul;69(7):388-401. doi: 10.1111/pcn.12291. Epub 2015 Apr 5. Psychiatry Clin Neurosci. 2015. PMID: 25762210 Review.

Cited by

References

    1. Hettema JM, Neale MC, Kendler KS. A review and meta-analysis of the genetic epidemiology of anxiety disorders. Am J Psychiatry. 2001 Oct;158(10):1568–78. - PubMed
    1. Smoller JW, Block SR, Young MM. Genetics of anxiety disorders: the complex road from DSM to DNA. Depress Anxiety. 2009;26(11):965–75. - PubMed
    1. Maron E, Hettema JM, Shlik J. Advances in molecular genetics of panic disorder. Mol Psychiatry. 2010 Jul;15(7):681–701. - PubMed
    1. Erhardt A, Czibere L, Roeske D, Lucae S, Unschuld PG, Ripke S, et al. TMEM132D, a new candidate for anxiety phenotypes: evidence from human and mouse studies. Mol Psychiatry. 2011 Jun;16(6):647–63. - PubMed
    1. Otowa T, Kawamura Y, Nishida N, Sugaya N, Koike A, Yoshida E, et al. Meta-analysis of genome-wide association studies for panic disorder in the Japanese population. Transl Psychiatry. 2012;2:e186. - PMC - PubMed

Publication types