Genome evolution of ferns: evidence for relative stasis of genome size across the fern phylogeny
- PMID: 26756823
- DOI: 10.1111/nph.13833
Genome evolution of ferns: evidence for relative stasis of genome size across the fern phylogeny
Abstract
The genome evolution of ferns has been considered to be relatively static compared with angiosperms. In this study, we analyse genome size data and chromosome numbers in a phylogenetic framework to explore three hypotheses: the correlation of genome size and chromosome number, the origin of modern ferns from ancestors with high chromosome numbers, and the occurrence of several whole-genome duplications during the evolution of ferns. To achieve this, we generated new genome size data, increasing the percentage of fern species with genome sizes estimated to 2.8% of extant diversity, and ensuring a comprehensive phylogenetic coverage including at least three species from each fern order. Genome size was correlated with chromosome number across all ferns despite some substantial variation in both traits. We observed a trend towards conservation of the amount of DNA per chromosome, although Osmundaceae and Psilotaceae have substantially larger chromosomes. Reconstruction of the ancestral genome traits suggested that the earliest ferns were already characterized by possessing high chromosome numbers and that the earliest divergences in ferns were correlated with substantial karyological changes. Evidence for repeated whole-genome duplications was found across the phylogeny. Fern genomes tend to evolve slowly, albeit genome rearrangements occur in some clades.
Keywords: DNA C-values; chromosome number; chromosome structure; genome size; macroevolution; phylogeny; polyploidy; pteridophytes.
© 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
