Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Feb 10;28(5):056005.
doi: 10.1088/0953-8984/28/5/056005. Epub 2016 Jan 13.

Pressure dependent structural changes and predicted electrical polarization in perovskite RMnO₃

Affiliations

Pressure dependent structural changes and predicted electrical polarization in perovskite RMnO₃

T Wu et al. J Phys Condens Matter. .

Abstract

High pressure x-ray diffraction measurements on perovskite RMnO3 (R = Dy, Ho and Lu) reveal that varying structural changes occur for different R ions. Large lattice changes (orthorhombic strain) occur in DyMnO3 and HoMnO3 while the Jahn-Teller (JT) distortion remains stable. Conversely, in the small R-ion system LuMnO3, Mn-O bond distortions are observed between 4 and 8 GPa with a broad minimum in the JT distortion. High pressure infrared measurements indicate that a phonon near 390 cm(-1) corresponding to the complex motion of the Mn and O ions changes anomalously for LuMnO3. It softens in the 4-8 GPa region, which is consistent with the structural change in Mn-O bonds and then hardens at higher pressures. By contrast, the phonons continuously harden with increasing pressure for DyMnO3 and HoMnO3. Density functional theory methods show that E-phase LuMnO3 is the most stable phase up to the 10 GPa pressure examined. Simulations indicate that the distinct structural change under pressure in LuMnO3 can possibly be used to optimize the electric polarization by pressure/strain.

PubMed Disclaimer

Publication types

LinkOut - more resources