Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Jan 27;138(3):806-9.
doi: 10.1021/jacs.5b12986. Epub 2016 Jan 15.

Engineering Functionalization in a Supramolecular Polymer: Hierarchical Self-Organization of Triply Orthogonal Non-covalent Interactions on a Supramolecular Coordination Complex Platform

Affiliations

Engineering Functionalization in a Supramolecular Polymer: Hierarchical Self-Organization of Triply Orthogonal Non-covalent Interactions on a Supramolecular Coordination Complex Platform

Zhixuan Zhou et al. J Am Chem Soc. .

Abstract

Here we present a method for the construction of functionalizable supramolecular polymers by controlling three orthogonal interactions within a single system: (i) coordination-driven self-assembly; (ii) H-bonding; and (iii) host-guest interactions between crown ether and dialkylammonium substrates. Three unique molecules constitute the supramolecular construct, including a 2-ureido-4-pyrimidinone (UPy)-functionalized rigid dipyridyl donor and a complementary organoplatinum(II) acceptor decorated with a crown ether moiety that provide the basis for self-assembly and polymerization. The final host-guest interaction is demonstrated by using one of two dialkylammonium molecules containing fluorophores that bind to the benzo-21-crown-7 (B21C7) groups of the acceptors, providing a spectroscopic handle to evaluate the functionalization. An initial coordination-driven self-assembly yields hexagonal metallacycles with alternating UPy and B21C7 groups at their vertices. The assembly does not interfere with H-bonding between the UPy groups, which link the discrete metallacycles into a supramolecular network, leaving the B21C7 groups free for functionalization via host-guest chemistry. The resultant network results in a cavity-cored metallogel at high concentrations or upon solvent swelling. The light-emitting properties of the dialkylammonium substrates were transferred to the network upon host-guest binding. This method is compatible with any dialkylammonium substrate that does not disrupt coordination nor H-bonding, and thus, the unification of these three orthogonal interactions represents a simple yet highly efficient strategy to obtain supramolecular polymeric materials with desirable functionality.

PubMed Disclaimer

Publication types

LinkOut - more resources