Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2016 Mar:82:151-67.
doi: 10.1016/j.biomaterials.2015.11.044. Epub 2015 Dec 15.

Low-dose phase-based X-ray imaging techniques for in situ soft tissue engineering assessments

Affiliations
Comparative Study

Low-dose phase-based X-ray imaging techniques for in situ soft tissue engineering assessments

Zohreh Izadifar et al. Biomaterials. 2016 Mar.

Abstract

In tissue engineering, non-invasive imaging of biomaterial scaffolds and tissues in living systems is essential to longitudinal animal studies for assessments without interrupting the repair process. Conventional X-ray imaging is inadequate for use in soft tissue engineering due to the limited absorption difference between the soft tissue and biomaterial scaffolds. X-ray phase-based imaging techniques that derive contrast from refraction or phase effects rather than absorption can provide the necessary contrast to see low-density biomaterial scaffolds and tissues in large living systems. This paper explores and compares three synchrotron phase-based X-ray imaging techniques-computed tomography (CT)-diffraction enhanced imaging (DEI), -analyzer based imaging (ABI), and -phase contrast imaging (PCI)-for visualization and characterization of low-density biomaterial scaffolds and tissues in situ for non-invasive soft tissue engineering assessments. Intact pig joints implanted with polycaprolactone scaffolds were used as the model to assess and compare the imaging techniques in terms of different qualitative and quantitative criteria. For long-term in vivo live animal imaging, different strategies for reducing the imaging radiation dose and scan time-reduced number of CT projections, region of interest, and low resolution imaging-were examined with the presented phase-based imaging techniques. The results demonstrated promising capabilities of the phase-based techniques for visualization of biomaterial scaffolds and soft tissues in situ. The low-dose imaging strategies were illustrated effective for reducing the radiation dose to levels appropriate for live animal imaging. The comparison among the imaging techniques suggested that CT-DEI has the highest efficiency in retaining image contrast at considerably low radiation doses.

Keywords: Biomaterial scaffolds; Biomaterials characterization; Cartilage tissue engineering; Imaging radiation dose; Non-invasive imaging; Phase-based X-ray imaging; Synchrotron imaging.

PubMed Disclaimer

Publication types

LinkOut - more resources