Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Jan 13:9:18.
doi: 10.1186/s13071-016-1299-6.

Culex pipiens and Culex restuans mosquitoes harbor distinct microbiota dominated by few bacterial taxa

Affiliations

Culex pipiens and Culex restuans mosquitoes harbor distinct microbiota dominated by few bacterial taxa

Ephantus J Muturi et al. Parasit Vectors. .

Abstract

Background: Mosquitoes host diverse microbial communities that influence many aspects of their biology including reproduction, digestion, and ability to transmit pathogens. Unraveling the composition, structure, and function of these microbiota can provide new opportunities for exploiting microbial function for mosquito-borne disease control.

Methods: MiSeq® sequencing of 16S rRNA gene amplicons was used to characterize the microbiota of adult females of Culex pipiens L. and Cx. restuans Theobald collected from nine study sites in central Illinois.

Results: Out of 195 bacterial OTUs that were identified, 86 were shared between the two mosquito species while 16 and 93 OTUs were unique to Cx. pipiens and Cx. restuans, respectively. The composition and structure of microbial communities differed significantly between the two mosquito species with Cx. restuans hosting a more diverse bacterial community compared to Cx. pipiens. Wolbachia (OTU836919) was the dominant bacterial species in Cx. pipiens accounting for 91% of total microbiota while Sphingomonas (OTU817982) was the dominant bacterial species in Cx. restuans accounting for 31% of total microbiota. Only 3 and 6 OTUs occurred in over 60% of individuals in Cx. pipiens and Cx. restuans, respectively. There was little effect of study site on bacterial community structure of either mosquito species.

Conclusion: These results suggest that the two mosquito species support distinct microbial communities that are sparsely distributed between individuals. These findings will allow investigations of the role of identified microbiota on the spatial and temporal heterogeneity in WNV transmission and their potential application in disease control.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Map of Champaign County showing the location of the nine study sites. TW and BF represent the Trelease Woods and Brownfield Woods study sites respectively
Fig. 2
Fig. 2
Relative abundance of the top 20 bacterial families in Cx. pipiens and Cx. restuans samples from different study sites. (CP = Cx. pipiens, CR = Cx. restuans, Agric = Agriculture, BW = Busey Wood, WP = Weaver Park, SF = South Farms, CW = Collins Woods, TW = Trelease Woods, and BF = Brownfield Woods)
Fig. 3
Fig. 3
Relative abundance of the top 20 bacterial OTUs in Cx. pipiens and Cx. restuans samples from different study sites. (CP = Cx. pipiens, CR = Cx. restuans, Agric = Agriculture, BW = Busey Wood, WP = Weaver Park, SF = South Farms, CW = Collins Woods, TW = Trelease Woods, and BF = Brownfield Woods)
Fig. 4
Fig. 4
Nonmetric Multidimensional Scaling (NMDS) ordination displaying microbiome communities of Cx. pipiens and Cx. restuans. Microbiomes were distinct between the two mosquito species in each study site

References

    1. Wang Y, Gilbreath TM, 3rd, Kukutla P, Yan G, Xu J. Dynamic gut microbiome across life history of the malaria mosquito Anopheles gambiae in Kenya. PLoS One. 2011;6:e24767. doi: 10.1371/journal.pone.0024767. - DOI - PMC - PubMed
    1. Osei-Poku J, Mbogo CM, Palmer WJ, Jiggins FM. Deep sequencing reveals extensive variation in the gut microbiota of wild mosquitoes from Kenya. Mol Ecol. 2012;21:5138–5150. doi: 10.1111/j.1365-294X.2012.05759.x. - DOI - PubMed
    1. Zouache K, Raharimalala FN, Raquin V, Tran-Van V, Raveloson LH, Ravelonandro P, et al. Bacterial diversity of field-caught mosquitoes, Aedes albopictus and Aedes aegypti, from different geographic regions of Madagascar. FEMS Microbiol Ecol. 2011;75:377–389. doi: 10.1111/j.1574-6941.2010.01012.x. - DOI - PubMed
    1. Duguma D, Rugman-Jones P, Kaufman MG, Hall MW, Neufeld JD, Stouthamer R, et al. Bacterial communities associated with Culex mosquito larvae and two emergent aquatic plants of bioremediation importance. PLoS One. 2013;8:e72522. doi: 10.1371/journal.pone.0072522. - DOI - PMC - PubMed
    1. Gusmao DS, Santos AV, Marini DC, Bacci M, Jr, Berbert-Molina MA, Lemos FJ. Culture-dependent and culture-independent characterization of microorganisms associated with Aedes aegypti (Diptera: Culicidae) (L.) and dynamics of bacterial colonization in the midgut. Acta Trop. 2010;115:275–281. doi: 10.1016/j.actatropica.2010.04.011. - DOI - PubMed

Publication types

LinkOut - more resources