Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Mar;132(3):391-401.
doi: 10.1111/j.1469-8137.1996.tb01859.x.

Effects of elevated CO2 , nitrogen form and concentration on growth and photosynthesis of a fast- and slow-growing grass

Affiliations
Free article

Effects of elevated CO2 , nitrogen form and concentration on growth and photosynthesis of a fast- and slow-growing grass

J M Bowler et al. New Phytol. 1996 Mar.
Free article

Abstract

Growth and photosynthesis of Agrostis capillaris L. and Nardus stricta L. were measured for plants grown under ambient and elevated concentrations of CO2 (340 and 550 μl CO2 l(-1) respectively) and a range of nitrogen concentrations (0.01, 0.1, 1 and 5 mg N l(-1) ) supplied as either ammonium sulphate or sodium nitrate. After 42 d of growth for A. capillaris and 49 d of growth for N. stricta, the higher nitrogen concentrations resulted in stimulation of growth. The form of nitrogen did not affect the total dry weight attained by A. capillaris. However, ammonium-grown N. stricta attained a greater total dry weight than did nitrate-grown plants. Nitrogen form influenced leaf area ratio, which was greater in nitrate-grown A. capillaris and in ammonium-grown N. stricta. At the two lowest nitrogen concentrations there was no effect of elevated CO2 on total dry weight in either species, whilst at the two highest nitrogen concentrations positive growth responses to elevated C02 were observed. Photosynthetic capacity and carboxylation efficiency were lower in plants grown in elevated CO2 at the two lowest nitrogen concentrations, and were associated with greater leaf soluble carbohydrate content and lower foliar nitrogen concentrations. By contrast, the CO2 treatment did not affect these parameters at the two highest nitrogen concentrations employed.

Keywords: Agrostis capillaris; Ammonium; Nardus stricta; nitrate.

PubMed Disclaimer

LinkOut - more resources