A population of gap junction-coupled neurons drives recurrent network activity in a developing visual circuit
- PMID: 26763780
- PMCID: PMC4808126
- DOI: 10.1152/jn.01046.2015
A population of gap junction-coupled neurons drives recurrent network activity in a developing visual circuit
Abstract
In many regions of the vertebrate brain, microcircuits generate local recurrent activity that aids in the processing and encoding of incoming afferent inputs. Local recurrent activity can amplify, filter, and temporally and spatially parse out incoming input. Determining how these microcircuits function is of great interest because it provides glimpses into fundamental processes underlying brain computation. Within the Xenopus tadpole optic tectum, deep layer neurons display robust recurrent activity. Although the development and plasticity of this local recurrent activity has been well described, the underlying microcircuitry is not well understood. Here, using a whole brain preparation that allows for whole cell recording from neurons of the superficial tectal layers, we identified a physiologically distinct population of excitatory neurons that are gap junctionally coupled and through this coupling gate local recurrent network activity. Our findings provide a novel role for neuronal coupling among excitatory interneurons in the temporal processing of visual stimuli.
Keywords: Xenopus tadpole; gap junctions; microcircuit; optic tectum; recurrent activity.
Copyright © 2016 the American Physiological Society.
Figures






Similar articles
-
The horizontal brain slice preparation: a novel approach for visualizing and recording from all layers of the tadpole tectum.J Neurophysiol. 2015 Jan 1;113(1):400-7. doi: 10.1152/jn.00672.2014. Epub 2014 Oct 15. J Neurophysiol. 2015. PMID: 25343786 Free PMC article.
-
Development and spike timing-dependent plasticity of recurrent excitation in the Xenopus optic tectum.Nat Neurosci. 2008 Apr;11(4):467-75. doi: 10.1038/nn2076. Epub 2008 Mar 23. Nat Neurosci. 2008. PMID: 18344990
-
Inhibition to excitation ratio regulates visual system responses and behavior in vivo.J Neurophysiol. 2011 Nov;106(5):2285-302. doi: 10.1152/jn.00641.2011. Epub 2011 Jul 27. J Neurophysiol. 2011. PMID: 21795628 Free PMC article.
-
Early development and function of the Xenopus tadpole retinotectal circuit.Curr Opin Neurobiol. 2016 Dec;41:17-23. doi: 10.1016/j.conb.2016.07.002. Epub 2016 Jul 29. Curr Opin Neurobiol. 2016. PMID: 27475307 Review.
-
Focusing on optic tectum circuitry through the lens of genetics.BMC Biol. 2010 Sep 28;8:126. doi: 10.1186/1741-7007-8-126. BMC Biol. 2010. PMID: 20920150 Free PMC article. Review.
Cited by
-
Emergence of Selectivity to Looming Stimuli in a Spiking Network Model of the Optic Tectum.Front Neural Circuits. 2016 Nov 24;10:95. doi: 10.3389/fncir.2016.00095. eCollection 2016. Front Neural Circuits. 2016. PMID: 27932957 Free PMC article.
-
Fragile X mental retardation protein knockdown in the developing Xenopus tadpole optic tectum results in enhanced feedforward inhibition and behavioral deficits.Neural Dev. 2016 Aug 8;11(1):14. doi: 10.1186/s13064-016-0069-7. Neural Dev. 2016. PMID: 27503008 Free PMC article.
-
Presenilin Regulates Retinotectal Synapse Formation through EphB2 Receptor Processing.Dev Neurobiol. 2018 Dec;78(12):1171-1190. doi: 10.1002/dneu.22638. Epub 2018 Oct 10. Dev Neurobiol. 2018. PMID: 30246932 Free PMC article.
References
-
- Aizenman CD, Akerman CJ, Jensen KR, Cline HT. Visually driven regulation of intrinsic neuronal excitability improves stimulus detection in vivo. Neuron 39: 831–842, 2003. - PubMed
-
- Blasits S, Maune S, Santos-Sacchi J. Nitric oxide uncouples gap junctions of supporting Deiters cells from Corti's organ. Pflugers Arch 440: 710–712, 2000. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous