Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Apr 15;85(7):1219-24.
doi: 10.1016/j.theriogenology.2015.12.002. Epub 2015 Dec 17.

Diagnosis and effects of urine contamination in cooled-extended stallion semen

Affiliations

Diagnosis and effects of urine contamination in cooled-extended stallion semen

R Ellerbrock et al. Theriogenology. .

Abstract

Urospermia is known to affect semen quality in many mammals, including stallions. Determinations of semen pH and creatinine and urea concentrations have been used to diagnose urine contamination in raw stallion semen. Unfortunately, practitioners suspecting urine contamination in cooled-shipped samples have no proven means to confirm the presence of urine. Therefore, the objectives of this study were (1) to assess the effects of urine contamination on sperm motility of extended fresh and cooled-stored stallion semen, (2) to evaluate the usefulness of semen color, odor, pH, and creatinine and urea concentrations for urospermia diagnosis, and (3) to evaluate the accuracy of a commercial blood urea nitrogen test strip in diagnosing urine contamination in extended-cooled stallion semen. Thirty-seven ejaculates were obtained from 11 stallions with no history of urospermia before division into 5 mL aliquots, and contamination with stallion urine. Each resulting sample was assessed for sperm motility, color, odor, pH, creatinine, and urea nitrogen concentration using both a semiquantitative test strip (Azostix), and a quantitative automated analyzer before and after cooling for 24 hour. Sperm motility parameters, pH, and creatinine and urea concentrations were analyzed using mixed models. Urine contamination decreased total and progressive motility in all samples before and after cooling (P < 0.05). Mean control total motility was 80% at 0 hour and 67% at 24 hours, whereas urine-contaminated samples ranged from 30% to 71% at 0 hour and 27% to 61% at 24 hours. Control mean urea (29 mg/dL) and creatinine (0.6 mg/dL) concentrations were significantly different (P < 0.05) from all urine-contaminated samples (158 mg/dL and 11.6 mg/dL, respectively) at 0 hour. Similarly, control mean urea (8 mg/dL) and creatinine (0.9 mg/dL) concentrations were significantly different than all urine-contaminated samples at 24 hours. Odor assessment presented moderate sensitivity (65%) and high specificity (100%), while color assessment presented low sensitivity (47%) and moderate specificity (79%) for urine in extended semen. Azostix strips were highly sensitive (95%) and specific (97%). Assessment of color, odor, and pH are not reliable methods to diagnose urine in experimentally contaminated cooled-stored stallion semen. Sperm motility parameters (in raw and cooled semen) are significantly reduced by the presence of urine in a concentration dependent. The results of the present study indicated that determination of urea and creatinine concentrations can be used to diagnose urospermia and that Azostix can be used as a point care method for diagnosing urine contamination in extended cooled stallion semen.

Keywords: Creatinine; Semen; Stallion; Urea; Urospermia.

PubMed Disclaimer

Publication types

LinkOut - more resources