Phosphorylation of an N-terminal regulatory domain activates the CheB methylesterase in bacterial chemotaxis
- PMID: 2677005
Phosphorylation of an N-terminal regulatory domain activates the CheB methylesterase in bacterial chemotaxis
Abstract
Two types of reversible protein modification reactions have been identified in bacterial chemotaxis, methylation of membrane receptor-transducer proteins at glutamate side chains and phosphorylation of cytoplasmic signal transduction proteins at histidine and aspartate side chains. CheB is a bifunctional enzyme that is involved in both these modification processes. Its C-terminal domain is a methylesterase that catalyzes the hydrolysis of gamma-carboxyl glutamyl methyl esters in the cytoplasmic domain of chemoreceptor proteins. Its N-terminal domain is a phosphatase that catalyzes the hydrolysis of phospho-CheA, the central response regulator of bacterial chemotaxis. Phospho-CheB, produced as an intermediate in the phosphatase reaction, has dramatically increased methylesterase activity. The interplay between the methylesterase and phosphatase activities of CheB may provide a crucial link between adaptation and excitation in stimulus-response coupling.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
