Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Jan 7:6:1891.
doi: 10.3389/fpsyg.2015.01891. eCollection 2015.

Gamification of Learning Deactivates the Default Mode Network

Affiliations

Gamification of Learning Deactivates the Default Mode Network

Paul A Howard-Jones et al. Front Psychol. .

Abstract

We hypothesized that embedding educational learning in a game would improve learning outcomes, with increased engagement and recruitment of cognitive resources evidenced by increased activation of working memory network (WMN) and deactivation of default mode network (DMN) regions. In an fMRI study, we compared activity during periods of learning in three conditions that were increasingly game-like: Study-only (when periods of learning were followed by an exemplar question together with its correct answer), Self-quizzing (when periods of learning were followed by a multiple choice question in return for a fixed number of points) and Game-based (when, following each period of learning, participants competed with a peer to answer the question for escalating, uncertain rewards). DMN hubs deactivated as conditions became more game-like, alongside greater self-reported engagement and, in the Game-based condition, higher learning scores. These changes did not occur with any detectable increase in WMN activity. Additionally, ventral striatal activation was associated with responding to questions and receiving positive question feedback. Results support the significance of DMN deactivation for educational learning, and are aligned with recent evidence suggesting DMN and WMN activity may not always be anti-correlated.

Keywords: default mode network; memory; reward; working memory.

PubMed Disclaimer

Figures

FIGURE 1
FIGURE 1
Screen shot of interface when participants are receiving feedback on their response to the question (with the correct answer now indicated with a tick). The response (as shown by the symbol in the first circle) of both the participant being scanned (player “a”) and their competitor in the control room (player “b”) was correct. Since the participant being scanned had decided to game their points (as shown by the filled second circle) he/she may now win 30 points or no points depending on a wheel of fortune that is about to appear. Their competitor did not decide to game their points, so they will receive 15 points for their correct answer irrespective of the wheel of fortune.
FIGURE 2
FIGURE 2
Trial timeline for the Games-based condition, with main epochs of interest indicated in capitals. In this condition, participants were asked to study the learning content carefully (which was presented twice in the block to encourage rehearsal, but always with a novel question) before answering a question in return for points that could be doubled or lost on a wheel of fortune. At the same time, a competitor in the control room was trying to accumulate points in the same way. Responses of participant and competitor were hidden from each other until the correct answer was revealed, and both were required to decide whether they would be gaming on the wheel of fortune, should their answer be correct, before this outcome was known. The points available for a correct answer escalated over the block from 1 to 19. The duration of each trial was 50.4 s resulting in each the three conditions of 20 trials lasting 16 min and 48 s and, allowing for a momentary pause between conditions, a total functional scanning time of approximately 51 min.
FIGURE 3
FIGURE 3
Regions that showed greater deactivation in the Game-based condition compared with (TOP) the Study-only and (BOTTOM) the Self-quizzing condition, including bilateral Posterior Cingulate Cortex (PCC) and anterior Medial Prefrontal Cortex (aMPFC). The image is thresholded at P < 0.001 uncorrected and an extent of 10 voxels, with peak coordinates at Pfwe(whole-brain) < 0.05 provided in Tables 2 and 3.
FIGURE 4
FIGURE 4
Time-variation of Default Mode Network ROI in the left and right aMPFC and PCC. Graphs were created by analyzing each 5.6 s sub-period of the 28 s learning window in the game-based condition and show the extent of decrease relative to (left) the Study-only condition and (right) the Self-quizzing condition. An increase in the parameters estimates plotted here represents greater deactivation.
FIGURE 5
FIGURE 5
Bilateral activity in the ventral striatum (VS) when participants were responding to the question in the Games-based condition relative to the Study-only condition. The Game-based condition required participants to choose the correct answer amongst four options. The Study-only condition presented only one option with the question, which was the correct answer. The image is thresholded at P < 0.001 uncorrected and an extent of 10 voxels.

Similar articles

Cited by

References

    1. Adcock R. A. (2006). Reward-motivated learning: mesolimbic activation precedes memory formation. Neuron 50 507–517. 10.1016/j.neuron.2006.03.036 - DOI - PubMed
    1. All A., Nuñez Castellar E. P., Van Looy J. (2015). Towards a conceptual framework for assessing the effectiveness of digital game-based learning. Comput. Educ. 88 29–37. 10.1016/j.compedu.2015.04.012 - DOI
    1. Alloway T. P., Alloway R. G. (2010). Investigating the predictive roles of working memory and IQ in academic attainment. J. Exp. Child Psychol. 106 20–29. 10.1016/j.jecp.2009.11.003 - DOI - PubMed
    1. Andrews-Hanna J. R., Reidler J. S., Sepulcre J., Poulin R., Buckner R. L. (2010). Functional-anatomic fractionation of the brain’s default network. Neuron 65 550–562. 10.1016/j.neuron.2010.02.005 - DOI - PMC - PubMed
    1. Bavelier D., Levi D. M., Li R. W., Dan Y., Hensch T. K. (2010). Removing brakes on adult brain plasticity: from molecular to behavioral interventions. J. Neurosci. 30 14964–14971. 10.1523/jneurosci.4812-10.2010 - DOI - PMC - PubMed

LinkOut - more resources