DNA tertiary structures formed in vitro by misaligned hybridization of multiple tandem repeat sequences
- PMID: 2677997
- PMCID: PMC334820
- DOI: 10.1093/nar/17.18.7417
DNA tertiary structures formed in vitro by misaligned hybridization of multiple tandem repeat sequences
Abstract
DNA tertiary structures are shown to be formed by denaturation and reannealing in vitro of molecularly-cloned DNA containing multiple tandem repeat sequences. Electron microscopy of homoduplex DNA molecules containing the human c-Harvey-ras gene revealed knot-like structures which mapped to the position of the 812 bp variable tandem repeat (VTR) sequence. We propose that the structures result from slipped-strand mispairing within the VTR and hybridisation of homologous repetitive sequences in the single-stranded loops so produced. Similar structures were also found in freshly-linearized supercoiled plasmids. More complex knot-like structures were found in homoduplexes of a 4 kb tandem array from the hypervariable region 3' to the human alpha-globin locus. Formation of such DNA tertiary structures in vitro also provides a practical method for identifying and mapping direct tandem repeat arrays that are at least 800 bp long.
Similar articles
-
Intrahelical pseudoknots and interhelical associations mediated by mispaired human minisatellite DNA sequences in vitro.Gene. 1992 Nov 16;121(2):279-85. doi: 10.1016/0378-1119(92)90132-9. Gene. 1992. PMID: 1446825
-
Repetitive DNA sequences near three human beta-type globin genes.Nucleic Acids Res. 1980 Aug 11;8(15):3319-33. doi: 10.1093/nar/8.15.3319. Nucleic Acids Res. 1980. PMID: 7003536 Free PMC article.
-
The organization of repetitive sequences in a cluster of rabbit beta-like globin genes.Cell. 1980 Feb;19(2):379-91. doi: 10.1016/0092-8674(80)90512-7. Cell. 1980. PMID: 6244107
-
The interactions of enzyme and chemical probes with inverted repeats in supercoiled DNA.J Biomol Struct Dyn. 1983 Oct;1(1):169-82. doi: 10.1080/07391102.1983.10507433. J Biomol Struct Dyn. 1983. PMID: 6401110 Review.
-
Slipped strand DNA structures.Front Biosci. 2007 Sep 1;12:4788-99. doi: 10.2741/2427. Front Biosci. 2007. PMID: 17569609 Review.
Cited by
-
Creation and resolution of non-B-DNA structural impediments during replication.Crit Rev Biochem Mol Biol. 2022 Aug;57(4):412-442. doi: 10.1080/10409238.2022.2121803. Epub 2022 Sep 28. Crit Rev Biochem Mol Biol. 2022. PMID: 36170051 Free PMC article.
-
Variable numbers of tandem repeats in Plasmodium falciparum genes.J Mol Evol. 2010 Oct;71(4):268-78. doi: 10.1007/s00239-010-9381-8. Epub 2010 Aug 22. J Mol Evol. 2010. PMID: 20730584 Free PMC article.
-
Triplet repeat DNA structures and human genetic disease: dynamic mutations from dynamic DNA.J Biosci. 2002 Feb;27(1 Suppl 1):53-65. doi: 10.1007/BF02703683. J Biosci. 2002. PMID: 11927777
-
Short-sequence DNA repeats in prokaryotic genomes.Microbiol Mol Biol Rev. 1998 Jun;62(2):275-93. doi: 10.1128/MMBR.62.2.275-293.1998. Microbiol Mol Biol Rev. 1998. PMID: 9618442 Free PMC article. Review.
-
Structural analysis of slipped-strand DNA (S-DNA) formed in (CTG)n. (CAG)n repeats from the myotonic dystrophy locus.Nucleic Acids Res. 1998 Feb 1;26(3):816-23. doi: 10.1093/nar/26.3.816. Nucleic Acids Res. 1998. PMID: 9443975 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources