Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Jan 19;14(1):e1002357.
doi: 10.1371/journal.pbio.1002357. eCollection 2016 Jan.

Standardized Assessment of Biodiversity Trends in Tropical Forest Protected Areas: The End Is Not in Sight

Affiliations

Standardized Assessment of Biodiversity Trends in Tropical Forest Protected Areas: The End Is Not in Sight

Lydia Beaudrot et al. PLoS Biol. .

Abstract

Extinction rates in the Anthropocene are three orders of magnitude higher than background and disproportionately occur in the tropics, home of half the world's species. Despite global efforts to combat tropical species extinctions, lack of high-quality, objective information on tropical biodiversity has hampered quantitative evaluation of conservation strategies. In particular, the scarcity of population-level monitoring in tropical forests has stymied assessment of biodiversity outcomes, such as the status and trends of animal populations in protected areas. Here, we evaluate occupancy trends for 511 populations of terrestrial mammals and birds, representing 244 species from 15 tropical forest protected areas on three continents. For the first time to our knowledge, we use annual surveys from tropical forests worldwide that employ a standardized camera trapping protocol, and we compute data analytics that correct for imperfect detection. We found that occupancy declined in 22%, increased in 17%, and exhibited no change in 22% of populations during the last 3-8 years, while 39% of populations were detected too infrequently to assess occupancy changes. Despite extensive variability in occupancy trends, these 15 tropical protected areas have not exhibited systematic declines in biodiversity (i.e., occupancy, richness, or evenness) at the community level. Our results differ from reports of widespread biodiversity declines based on aggregated secondary data and expert opinion and suggest less extreme deterioration in tropical forest protected areas. We simultaneously fill an important conservation data gap and demonstrate the value of large-scale monitoring infrastructure and powerful analytics, which can be scaled to incorporate additional sites, ecosystems, and monitoring methods. In an era of catastrophic biodiversity loss, robust indicators produced from standardized monitoring infrastructure are critical to accurately assess population outcomes and identify conservation strategies that can avert biodiversity collapse.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. TEAM sites.
Trends in occupancy for mammal and bird species in 15 tropical protected areas assessed with standardized surveys using camera traps. The fraction of populations with unknown, decreasing, stable, or increasing occupancy is shown for each site. The type of landscape is indicated by marker color, and the number of years of camera trap data is indicated inside the square marker. Green shading depicts tropical forest. See S1 and S2 Tables for numerical data and information corresponding to 3-letter site codes.
Fig 2
Fig 2. WPI.
Overall (a), frequency histogram of occupancy trends and population occupancy status (b), and WPI by site and landscape (c). Shading depicts 50th and 80th (a) or 80th (c) percentile intervals. Labels (c) represent site codes (S1 Table). The WPI Analytics System is accessible at http://wpi.teamnetwork.org. Public access allows anyone to monitor ground-dwelling trends of mammal and bird species in these protected areas. See S4 Table for numerical data for Fig 2A, S2 Table for Fig 2B, and S5 Table for Fig 2C.

References

    1. Dirzo R, Young HS, Galetti M, Ceballos G, Isaac NJB, Collen B. Defaunation in the Anthropocene. Science. 2014;345(6195):401–6. 10.1126/Science.1251817 WOS:000339655100031. - DOI - PubMed
    1. Pimm SL, Jenkins CN, Abell R, Brooks TM, Gittleman JL, Joppa LN, et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science. 2014;344(6187):1246752 Artn 1246752 10.1126/Science.1246752 WOS:000336495800034. - DOI - PubMed
    1. Pouzols FM, Toivonen T, Di Minin E, Kukkala AS, Kullberg P, Kuustera J, et al. Global protected area expansion is compromised by projected land-use and parochialism. Nature. 2014;516(7531):383–6. 10.1038/Nature14032 WOS:000346484800044. - DOI - PubMed
    1. Gibson L, Lee TM, Koh LP, Brook BW, Gardner TA, Barlow J, et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature. 2011;478(7369):378–81. 10.1038/nature10425 WOS:000296021100044. - DOI - PubMed
    1. Terborgh J, Lopez L, Nunez P, Rao M, Shahabuddin G, Orihuela G, et al. Ecological meltdown in predator-free forest fragments. Science. 2001;294(5548):1923–6. ISI:000172465000058. - PubMed

Publication types

LinkOut - more resources