Depletion of Paraspeckle Protein 1 Enhances Methyl Methanesulfonate-Induced Apoptosis through Mitotic Catastrophe
- PMID: 26785254
- PMCID: PMC4718682
- DOI: 10.1371/journal.pone.0146952
Depletion of Paraspeckle Protein 1 Enhances Methyl Methanesulfonate-Induced Apoptosis through Mitotic Catastrophe
Abstract
Previously, we have shown that paraspeckle protein 1 (PSPC1), a protein component of paraspeckles that was involved in cisplatin-induced DNA damage response (DDR), probably functions at the G1/S checkpoint. In the current study, we further examined the role of PSPC1 in another DNA-damaging agent, methyl methanesulfonate (MMS)-induced DDR, in particular, focusing on MMS-induced apoptosis in HeLa cells. First, it was found that MMS treatment induced the expression of PSPC1. While MMS treatment alone can induce apoptosis, depletion of PSPC1 expression using siRNA significantly increased the level of apoptosis following MMS exposure. In contrast, overexpressing PSPC1 decreased the number of apoptotic cells. Interestingly, morphological observation revealed that many of the MMS-treated PSPC1-knockdown cells contained two or more nuclei, indicating the occurrence of mitotic catastrophe. Cell cycle analysis further showed that depletion of PSPC1 caused more cells entering the G2/M phase, a prerequisite of mitosis catastrophe. On the other hand, over-expressing PSPC1 led to more cells accumulating in the G1/S phase. Taken together, these observations suggest an important role for PSPC1 in MMS-induced DDR, and in particular, depletion of PSPC1 can enhance MMS-induced apoptosis through mitotic catastrophe.
Conflict of interest statement
Figures





References
-
- Ayscough K, Hayles J, MacNeill SA, Nurse P. Cold-sensitive mutants of p34cdc2 that suppress a mitotic catastrophe phenotype in fission yeast. Molecular & general genetics: MGG. 1992;232(3):344–50. . - PubMed
-
- Margottin-Goguet F, Hsu JY, Loktev A, Hsieh HM, Reimann JD, Jackson PK. Prophase destruction of Emi1 by the SCF(betaTrCP/Slimb) ubiquitin ligase activates the anaphase promoting complex to allow progression beyond prometaphase. Developmental cell. 2003;4(6):813–26. . - PubMed
-
- Lock RB, Stribinskiene L. Dual modes of death induced by etoposide in human epithelial tumor cells allow Bcl-2 to inhibit apoptosis without affecting clonogenic survival. Cancer research. 1996;56(17):4006–12. . - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous