Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 May;137(4):589-603.
doi: 10.1111/jnc.13537. Epub 2016 Mar 15.

A sphingolipid mechanism for behavioral extinction

Affiliations
Free article

A sphingolipid mechanism for behavioral extinction

Joseph P Huston et al. J Neurochem. 2016 May.
Free article

Abstract

Reward-dependent instrumental behavior must continuously be re-adjusted according to environmental conditions. Failure to adapt to changes in reward contingencies may incur psychiatric disorders like anxiety and depression. When an expected reward is omitted, behavior undergoes extinction. While extinction involves active re-learning, it is also accompanied by emotional behaviors indicative of frustration, anxiety, and despair (extinction-induced depression). Here, we report evidence for a sphingolipid mechanism in the extinction of behavior. Rapid extinction, indicating efficient re-learning, coincided with a decrease in the activity of the enzyme acid sphingomyelinase (ASM), which catalyzes turnover of sphingomyelin to ceramide, in the dorsal hippocampus of rats. The stronger the decline in ASM activity, the more rapid was the extinction. Sphingolipid-focused lipidomic analysis showed that this results in a decline of local ceramide species in the dorsal hippocampus. Ceramides shape the fluidity of lipid rafts in synaptic membranes and by that way can control neural plasticity. We also found that aging modifies activity of enzymes and ceramide levels in selective brain regions. Aging also changed how the chronic treatment with corticosterone (stress) or intranasal dopamine modified regional enzyme activity and ceramide levels, coinciding with rate of extinction. These data provide first evidence for a functional ASM-ceramide pathway in the brain involved in the extinction of learned behavior. This finding extends the known cellular mechanisms underlying behavioral plasticity to a new class of membrane-located molecules, the sphingolipids, and their regulatory enzymes, and may offer new treatment targets for extinction- and learning-related psychopathological conditions. Sphingolipids are common lipids in the brain which form lipid domains at pre- and postsynaptic membrane compartments. Here we show a decline in dorsal hippocampus ceramide species together with a reduction of acid sphingomyelinase activity during extinction of conditioned behavior in rats. This reduction was associated with expression of re-learning-related behavior, but not with emotional behaviors. Read the Editorial Highlight for this article on page 485.

Keywords: acid sphingomyelinase; ceramide; extinction; hippocampus; operant behavior; sphingomyelin.

PubMed Disclaimer

Publication types

LinkOut - more resources