Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Sep 28;380(1):359-68.
doi: 10.1016/j.canlet.2015.12.033. Epub 2016 Jan 11.

Whom to blame for metastasis, the epithelial-mesenchymal transition or the tumor microenvironment?

Affiliations
Review

Whom to blame for metastasis, the epithelial-mesenchymal transition or the tumor microenvironment?

M Pietilä et al. Cancer Lett. .

Abstract

Changes in the tumor microenvironment (TME) can trigger the activation of otherwise non-malignant cells to become highly aggressive and motile. This is evident during initial tumor growth when the poor vascularization in tumors generates hypoxic regions that trigger the latent embryonic program, epithelial-to-mesenchymal transition (EMT), in epithelial carcinoma cells (e-cars) leading to highly motile mesenchymal-like carcinoma cells (m-cars), which also acquire cancer stem cell properties. After that, specific bidirectional interactions take place between m-cars and the cellular components of TME at different stages of metastasis. These interactions include several vicious positive feedback loops in which m-cars trigger a phenotypic switch, causing normal stromal cells to become pro-tumorigenic, which then further promote the survival, motility, and proliferation of m-cars. Accordingly, there is not a single culprit accounting for metastasis. Instead both m-cars and the TME dynamically interact, evolve and promote metastasis. In this review, we discuss the current status of the known interactions between m-cars and the TME during different stages of metastasis and how these interactions promote the metastatic activity of highly malignant m-cars by promoting their invasive mesenchymal phenotype and CSC properties.

Keywords: Cancer stem cells; Epithelial-to-mesenchymal transition; Immune modulation; Metastasis; Tumor microenvironment; Tumor stroma.

PubMed Disclaimer

MeSH terms

LinkOut - more resources