Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Jan 7:9:203-10.
doi: 10.2147/OTT.S89967. eCollection 2016.

PI3K inhibitors as new cancer therapeutics: implications for clinical trial design

Affiliations
Review

PI3K inhibitors as new cancer therapeutics: implications for clinical trial design

Cristian Massacesi et al. Onco Targets Ther. .

Abstract

The PI3K-AKT-mTOR pathway is frequently activated in cancer. PI3K inhibitors, including the pan-PI3K inhibitor buparlisib (BKM120) and the PI3Kα-selective inhibitor alpelisib (BYL719), currently in clinical development by Novartis Oncology, may therefore be effective as anticancer agents. Early clinical studies with PI3K inhibitors have demonstrated preliminary antitumor activity and acceptable safety profiles. However, a number of unanswered questions regarding PI3K inhibition in cancer remain, including: what is the best approach for different tumor types, and which biomarkers will accurately identify the patient populations most likely to benefit from specific PI3K inhibitors? This review summarizes the strategies being employed by Novartis Oncology to help maximize the benefits of clinical studies with buparlisib and alpelisib, including stratification according to PI3K pathway activation status, selective enrollment/target enrichment (where patients with PI3K pathway-activated tumors are specifically recruited), nonselective enrollment with mandatory tissue collection, and enrollment of patients who have progressed on previous targeted agents, such as mTOR inhibitors or endocrine therapy. An overview of Novartis-sponsored and Novartis-supported trials that are utilizing these approaches in a range of cancer types, including breast cancer, head and neck squamous cell carcinoma, non-small cell lung carcinoma, lymphoma, and glioblastoma multiforme, is also described.

Keywords: PI3K inhibitors; PI3K–AKT–mTOR pathway; biomarkers; clinical trial design; patient selection.

PubMed Disclaimer

Figures

Figure 1
Figure 1
The PI3K–AKT–mTOR pathway and drug targets.
Figure 2
Figure 2
Approaches to overcome challenges in PI3K inhibitor development. Abbreviations: NSCLC, non-small-cell lung carcinoma; GBM, glioblastoma multiforme.

References

    1. Dienstmann R, Rodon J, Serra V, Tabernero J. Picking the point of inhibition: a comparative review of PI3K/AKT/mTOR pathway inhibitors. Mol Cancer Ther. 2014;13(5):1021–1031. - PubMed
    1. Fritsch C, Huang A, Chatenay-Rivauday C, et al. Characterization of the novel and specific PI3Kα inhibitor NVP-BYL719 and development of the patient stratification strategy for clinical trials. Mol Cancer Ther. 2014;13(5):1117–1129. - PubMed
    1. Maira SM, Pecchi S, Huang A, et al. Identification and characterization of NVP-BKM120, an orally available pan-class I PI3-kinase inhibitor. Mol Cancer Ther. 2012;11(2):317–328. - PubMed
    1. Rodon J, Dienstmann R, Serra V, Tabernero J. Development of PI3K inhibitors: lessons learned from early clinical trials. Nat Rev Clin Oncol. 2013;10(3):143–153. - PubMed
    1. LoPiccolo J, Blumenthal GM, Bernstein WB, Dennis PA. Targeting the PI3K/Akt/mTOR pathway: effective combinations and clinical considerations. Drug Resist Updat. 2008;11(1–2):32–50. - PMC - PubMed