Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Jan 11:6:2030.
doi: 10.3389/fpsyg.2015.02030. eCollection 2015.

Emotion Regulation through Movement: Unique Sets of Movement Characteristics are Associated with and Enhance Basic Emotions

Affiliations

Emotion Regulation through Movement: Unique Sets of Movement Characteristics are Associated with and Enhance Basic Emotions

Tal Shafir et al. Front Psychol. .

Abstract

We have recently demonstrated that motor execution, observation, and imagery of movements expressing certain emotions can enhance corresponding affective states and therefore could be used for emotion regulation. But which specific movement(s) should one use in order to enhance each emotion? This study aimed to identify, using Laban Movement Analysis (LMA), the Laban motor elements (motor characteristics) that characterize movements whose execution enhances each of the basic emotions: anger, fear, happiness, and sadness. LMA provides a system of symbols describing its motor elements, which gives a written instruction (motif) for the execution of a movement or movement-sequence over time. Six senior LMA experts analyzed a validated set of video clips showing whole body dynamic expressions of anger, fear, happiness and sadness, and identified the motor elements that were common to (appeared in) all clips expressing the same emotion. For each emotion, we created motifs of different combinations of the motor elements common to all clips of the same emotion. Eighty subjects from around the world read and moved those motifs, to identify the emotion evoked when moving each motif and to rate the intensity of the evoked emotion. All subjects together moved and rated 1241 motifs, which were produced from 29 different motor elements. Using logistic regression, we found a set of motor elements associated with each emotion which, when moved, predicted the feeling of that emotion. Each emotion was predicted by a unique set of motor elements and each motor element predicted only one emotion. Knowledge of which specific motor elements enhance specific emotions can enable emotional self-regulation through adding some desired motor qualities to one's personal everyday movements (rather than mimicking others' specific movements) and through decreasing motor behaviors which include elements that enhance negative emotions.

Keywords: Laban Movement Analysis; affect; bodily expression; embodiment; emotion; emotion regulation; motor characteristic; movement.

PubMed Disclaimer

Figures

Figure 1
Figure 1
This figure shows a picture of two different people doing two different movements, based on the same instruction—to move a movement that includes the motor elements: passive weight (lack of activation of weight effort), sinking (shape), head down (body part, space), and arm(s) to upper body (body action).
Figure 2
Figure 2
Examples of motifs that were read and moved by the participants. The first row of “angry” motifs (# 13.12, 202.002, and 13.18) are motifs constructed from motor elements that were taken from angry clips. The second row of “fearful” motifs (# 25.12 and 25.13) are motifs constructed from motor elements that were extracted from fearful clips. The third row of “happy” motifs (# 300.003, 49.101, and 300.05) are motifs constructed from motor elements that were extracted from happy clips. The last row of “sad” motifs (# 29.13, 29.11, and 29.21) are motifs constructed from motor elements that were extracted from the sad clips. Reading the motifs and moving them is similar to reading musical score and singing or playing the notes in it. Motifs that included 1–3 motor elements (e.g., motifs 13.12, 202.002, 300.003, 29.13, 29.11, 29.21) could be moved by the participants using a variety of movements, all having the same qualities. For example, moving the qualities of punch (strong, direct, sudden) and forward direction (motif 13.12) could be done by punching a fist forward with one arm, punching with two arms together or one arm after another, a sharp Karate like strike forward with the edge of the hand, a fast kick forward, etc. Moving the elements head drop, bringing hands to the head and sinking (motif 29.11) could yield any of the two postures shown in Figure 1. Participants could repeat the same movement again and again or could move a variety of movements one after another but all having the same motor elements. Reading and moving the more complex motifs (e.g., motifs 13.18, 25.12, 25.13, 300.005) which include instructions (read from the bottom up) for a sequence of movements, can be paralleled to playing from a musical score a whole musical phrase.

References

    1. Atkinson A. P., Dittrich W. H., Gemmell A. J., Young A. W. (2004). Emotion perception from dynamic and static body expressions in point-light and full-light displays. Perception 33, 717–746. 10.1068/p5096 - DOI - PubMed
    1. Atkinson A. P., Tunstall M. L., Dittrich W. H. (2007). Evidence for distinct contributions of form and motion information to the recognition of emotions from body gestures. Cognition 104, 59–72. 10.1016/j.cognition.2006.05.005 - DOI - PubMed
    1. Barakova E., Lourens T. (2010). Expressing and interpreting emotional movements in social games with robots. Pers. Ubiquit. Comput. 14, 457–467. 10.1007/s00779-009-0263-2 - DOI
    1. Barliya A., Omlor L., Giese M. A., Berthoz A., Flash T. (2013). Expression of emotion in the kinematics of locomotion. Exp. Brain Res. 225, 159–176. 10.1007/s00221-012-3357-4 - DOI - PubMed
    1. Bartenieff I., Dori Lewis D. (2002). Body Movement: Coping with the Environment. Oxon: NYC Routledge.

LinkOut - more resources