Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Jun;71(6):1438-50.
doi: 10.1093/jac/dkv445. Epub 2016 Jan 21.

Drug resistance mechanisms and their regulation in non-albicans Candida species

Affiliations
Review

Drug resistance mechanisms and their regulation in non-albicans Candida species

Anna Kołaczkowska et al. J Antimicrob Chemother. 2016 Jun.

Abstract

Fungal pathogens use various mechanisms to survive exposure to drugs. Prolonged treatment very often leads to the stepwise acquisition of resistance. The limited number of antifungal therapeutics and their mostly fungistatic rather than fungicidal character facilitates selection of resistant strains. These are able to cope with cytotoxic molecules by acquisition of appropriate mutations, re-wiring gene expression and metabolic adjustments. Recent evidence points to the paramount importance of the permeability barrier and cell wall integrity in the process of adaptation to high drug concentrations. Molecular details of basal and acquired drug resistance are best characterized in the most frequent human fungal pathogen, Candida albicans Effector genes directly related to the acquisition of elevated tolerance of this species to azole and echinocandin drugs are well described. The emergence of high-level drug resistance against intrinsically lower susceptibility to azoles in yeast species other than C. albicans is, however, of particular concern. This is due to their steadily increasing contribution to high mortality rates associated with disseminated infections. Recent findings concerning underlying mechanisms associated with elevated drug resistance suggest a link to cell wall and plasma membrane metabolism in non-albicans Candida species.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources