Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 May;27(5):787-94.
doi: 10.1093/annonc/mdw030. Epub 2016 Jan 22.

Phosphoproteomics in translational research: a sarcoma perspective

Affiliations
Free article
Review

Phosphoproteomics in translational research: a sarcoma perspective

J Noujaim et al. Ann Oncol. 2016 May.
Free article

Abstract

Phosphoproteomics has been extensively used as a preclinical research tool to characterize the phosphorylated components of the cancer proteome. Advances in the field have yielded insights into new drug targets, mechanisms of disease progression and drug resistance, and biomarker discovery. However, application of this technology to clinical research has been challenging because of practical issues relating to specimen integrity and tumour heterogeneity. Beyond these limitations, phosphoproteomics has the potential to play a pivotal role in translational studies and contribute to advances in different tumour groups, including rare disease sites like sarcoma. In this review, we propose that deploying phosphoproteomic technologies in translational research may facilitate the identification of better defined predictive biomarkers for patient stratification, inform drug selection in umbrella trials and identify new combinations to overcome drug resistance. We provide an overview of current phosphoproteomic technologies, such as affinity-based assays and mass spectrometry-based approaches, and discuss their advantages and limitations. We use sarcoma as an example to illustrate the current challenges in evaluating targeted kinase therapies in clinical trials. We then highlight useful lessons from preclinical studies in sarcoma biology to demonstrate how phosphoproteomics may address some of these challenges. Finally, we conclude by offering a perspective and list the key measures required to translate and benchmark a largely preclinical technology into a useful tool for translational research.

Keywords: clinical trials; drug resistance; phosphoproteomics; sarcoma; signal transduction.

PubMed Disclaimer