Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Jan;197(1):13-25.
doi: 10.1016/j.jsb.2016.01.009. Epub 2016 Feb 1.

Optimizing force spectroscopy by modifying commercial cantilevers: Improved stability, precision, and temporal resolution

Affiliations
Review

Optimizing force spectroscopy by modifying commercial cantilevers: Improved stability, precision, and temporal resolution

Devin T Edwards et al. J Struct Biol. 2017 Jan.

Abstract

Atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS) enables a wide array of studies, from measuring the strength of a ligand-receptor bond to elucidating the complex folding pathway of individual membrane proteins. Such SMFS studies and, more generally, the diverse applications of AFM across biophysics and nanotechnology are improved by enhancing data quality via improved force stability, force precision, and temporal resolution. For an advanced, small-format commercial AFM, we illustrate how these three metrics are limited by the cantilever itself rather than the larger microscope structure, and then describe three increasingly sophisticated cantilever modifications that yield enhanced data quality. First, sub-pN force precision and stability over a broad bandwidth (Δf=0.01-20Hz) is routinely achieved by removing a long (L=100μm) cantilever's gold coating. Next, this sub-pN bandwidth is extended by a factor of ∼50 to span five decades of bandwidth (Δf=0.01-1000Hz) by using a focused ion beam (FIB) to modify a shorter (L=40μm) cantilever. Finally, FIB-modifying an ultrashort (L=9μm) cantilever improves its force stability and precision while maintaining 1-μs temporal resolution. These modified ultrashort cantilevers have a reduced quality factor (Q≈0.5) and therefore do not apply a substantial (30-90pN), high-frequency force modulation to the molecule, a phenomenon that is unaccounted for in traditional SMFS analysis. Currently, there is no perfect cantilever for all applications. Optimizing AFM-based SMFS requires understanding the tradeoffs inherent to using a specific cantilever and choosing the one best suited to a particular application.

Keywords: Atomic force microscopy; Cantilever dynamics; Focused-ion-beam modification; Protein folding; Single-molecule biophysics; Single-molecule force spectroscopy.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources