Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Jan 22:8:8.
doi: 10.1186/s13148-016-0174-9. eCollection 2016.

Maternal B vitamins: effects on offspring weight and DNA methylation at genomically imprinted domains

Affiliations

Maternal B vitamins: effects on offspring weight and DNA methylation at genomically imprinted domains

Lauren E McCullough et al. Clin Epigenetics. .

Abstract

Background: Inadequate maternal nutrition during early fetal development can create permanent alterations in the offspring, leading to poor health outcomes. While nutrients involved in one-carbon cycle metabolism are important to fetal growth, associations with specific nutrients remain inconsistent. This study estimates associations between maternal vitamins B12, B6 (pyridoxal phosphate [PLP] and 4-pyridoxic acid [PA]), and homocysteine (Hcy) concentrations, offspring weight (birth weight and 3-year weight gain), and DNA methylation at four differentially methylated regions (DMRs) known to be involved in fetal growth and development (H19, MEG3, SGCE/PEG10, and PLAGL1).

Methods: Study participants (n = 496) with biomarker and birth weight data were enrolled as part of the Newborn Epigenetics STudy. Weight gain data were available for 273 offspring. Among 484 mother-infant pairs, DNA methylation at regulatory sequences of genomically imprinted genes was measured in umbilical cord blood DNA using bisulfite pyrosequencing. We used generalized linear models to estimate associations.

Results: Multivariate adjusted regression models revealed an inverse association between maternal Hcy concentration and male birth weight (β = -210.40, standard error (SE) = 102.08, p = 0.04). The offspring of the mothers in the highest quartile of B12 experienced lower weight gain between birth and 3 years compared to the offspring of the mothers in the lowest (β = -2203.03, SE = 722.49, p = 0.003). Conversely, maternal PLP was associated with higher weight gain in males; higher maternal PLP concentrations were also associated with offspring DNA methylation levels at the MEG3 DMR (p < 0.01).

Conclusions: While maternal concentrations of B12, B6, and Hcy do not associate with birth weight overall, they may play an important role in 3-year weight gain. This is the first study to report an association between maternal PLP and methylation at the MEG3 DMR which may be an important epigenetic tag for maternal B vitamin adequacy.

Keywords: B vitamins; Birth weight; Childhood weight gain; DNA methylation; Epidemiology; Imprinted genes.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Interindividual variability exceeds intraindividual variability in DNA methylation at imprinted DMRs. Shown are the mean methylation levels, ± standard deviation for the four DMRs analyzed, alongside the means for technical replicates that were run alongside for a subset of the samples (~2 % of the total)

References

    1. Calkins K, Devaskar SU. Fetal origins of adult disease. Curr Probl Pediatr Adolesc Health Care. 2011;41(6):158–76. doi: 10.1016/j.cppeds.2011.01.001. - DOI - PMC - PubMed
    1. Barker DJ. Adult consequences of fetal growth restriction. Clin Obstet Gynecol. 2006;49(2):270–83. doi: 10.1097/00003081-200606000-00009. - DOI - PubMed
    1. McCormack VA, dos Santos Silva I, Koupil I, Leon DA, Lithell HO. Birth characteristics and adult cancer incidence: Swedish cohort of over 11,000 men and women. Int J Cancer. 2005;115(4):611–7. doi: 10.1002/ijc.20915. - DOI - PubMed
    1. Barker DJ, Gluckman PD, Godfrey KM, Harding JE, Owens JA, Robinson JS. Fetal nutrition and cardiovascular disease in adult life. Lancet. 1993;341(8850):938–41. doi: 10.1016/0140-6736(93)91224-A. - DOI - PubMed
    1. Rush EC, Katre P, Yajnik CS. Vitamin B12: one carbon metabolism, fetal growth and programming for chronic disease. Eur J Clin Nutr. 2014;68(1):2–7. doi: 10.1038/ejcn.2013.232. - DOI - PubMed

Publication types

MeSH terms