Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Jan 11:9:1-13.
doi: 10.2147/NSA.S68080. eCollection 2016.

Silver nanoparticle ink technology: state of the art

Affiliations
Review

Silver nanoparticle ink technology: state of the art

Krishna Rajan et al. Nanotechnol Sci Appl. .

Abstract

Printed electronics will bring to the consumer level great breakthroughs and unique products in the near future, shifting the usual paradigm of electronic devices and circuit boards from hard boxes and rigid sheets into flexible thin layers and bringing disposable electronics, smart tags, and so on. The most promising tool to achieve the target depends upon the availability of nanotechnology-based functional inks. A certain delay in the innovation-transfer process to the market is now being observed. Nevertheless, the most widely diffused product, settled technology, and the highest sales volumes are related to the silver nanoparticle-based ink market, representing the best example of commercial nanotechnology today. This is a compact review on synthesis routes, main properties, and practical applications.

Keywords: inks; nanocomposites; printed electronics; silver nanoparticles; surface plasmon resonance.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Silver nanocomposite ink after sintering and resin bonding of discrete electronic components. Notes: Printed on borosilicate glass. Image courtesy of Politronica Inkjet Printing SRL.
Figure 2
Figure 2
Top-down and bottom-up approaches to the synthesis of nanocrystals. Notes: Adapted from “Ion Exchange Technologies”, book edited by Ayben Kilislioğlu, ISBN 978-953-51-0836-8, Published: November 7, 2012 under CC BY 3.0 license. © Domènech et al.
Figure 3
Figure 3
Plot of atomic concentration against time, illustrating the generation of atoms, nucleation, and subsequent growth. Notes: Reprinted with permission from LaMer VK, Dinegar RH. Theory, production and mechanism of formation of monodispersed hydrosols. J Am Chem Soc. 1950;72(11):4847–4854. Copyright 1950 American Chemical Society.
Figure 4
Figure 4
Role of a capping agent in controlling the evolution of Ag seeds into nanocrystals with different shapes. Notes: Starting with single-crystal seeds, it is possible to selectively obtain Ag octahedrons enclosed by {111} facets by adding sodium citrate (Na3CA) and nanocubes/nanobars enclosed by {100} facets by adding polyvinylpyrrolidone (PVP). Reprinted with permission from Zeng J, Zheng Y, Rycenga M, et al. Controlling the shapes of silver nanocrystals with different capping agents. J Am Chem Soc. 2010;132(25):8552–8553. Copyright 2010 American Chemical Society. Abbreviation: AA, L-ascorbic acid.
Figure 5
Figure 5
TEM and AFM of silver nanoplatelets. Notes: (A) TEM image, (B) high-resolution TEM images with selected-area electron-diffraction patterns (inset), (C) FESEM image with edge-length distribution (inset graph), and (D) AFM image and thickness profile of silver nanoplatelets synthesized by the solvothermal method. Reprinted with permission from Lee YI, Kim S, Jung SB, Myung NV, Choa YH. Enhanced electrical and mechanical properties of silver nanoplatelet-based conductive features direct printed on a flexible substrate. ACS Appl Mater Interfaces. 2013;5(13):5908–5913. Copyright 2013 American Chemical Society. Abbreviations: TEM, transmission electron microscopy; FESEM, field-emission scanning electron microscopy; AFM, atomic force microscopy.
Figure 6
Figure 6
FESEM image of a water-based Ag nanoink. Notes: Deposited on an Si wafer (A); numerically extracted size distribution of nanoparticle population (B). Reprinted from Microelectronic Engineering, Volume 97 edition 9, Chiolerio A, Cotto M, Pandolfi P, et al, Ag nanoparticle-based inkjet printed planar transmission lines for RF and microwave applications: considerations on ink composition, nanoparticle size distribution and sintering time, Pages 8–15, Copyright 2012, with permission from Elsevier. Abbreviations: FESEM, field-emission scanning electron microscopy; ED, equivalent diameter.

References

    1. Samarasinghe SR, Pastoriza-Santos I, Edirisinghe MJ, et al. Electric-jet assisted layer-by-layer deposition of gold nanoparticles to prepare conducting tracks. Nat Sci. 2009;1(2):142–150.
    1. Abhinav VK, Rao VR, Karthik PS, Singh SP. Copper conductive inks: synthesis and utilization in flexible electronics. RSC Adv. 2015;46(39):63985–64030.
    1. Pudas M, Halonen N, Granat P, Vähäkangas J. Gravure printing of conductive particulate polymer inks on flexible substrates. Prog Org Coat. 2005;54(4):310–316.
    1. Li D, Sutton D, Burgess A, Graham D, Calvert PD. Conductive copper and nickel lines via reactive inkjet printing. J Mater Chem. 2009;19(22):3719–3724.
    1. Lewis HJ, Ryan A. Using electrically conductive inks and adhesives as a means to satisfy European PCB manufacturing directives. J Adhes Sci Technol. 2008;22(8–9):893–913.