Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016;16(2):206-15.
doi: 10.2174/1566524016666160126144722.

Nitric Oxide and Major Depressive Disorder: Pathophysiology and Treatment Implications

Affiliations
Review

Nitric Oxide and Major Depressive Disorder: Pathophysiology and Treatment Implications

P Kudlow et al. Curr Mol Med. 2016.

Abstract

Major depressive disorder (MDD) is a multi-factorial and heterogeneous disease. Robust evidence suggests that inflammation is involved in the pathogenesis of MDD for a subpopulation of individuals. However, it remains unclear what traits and/or states precede the onset of inflammation in this subpopulation of individuals with MDD. Several recent studies have implicated nitric oxide (NO) as a critical regulator of neuroinflammation, thus suggesting a possible role in the pathophysiology of MDD. The aim of this review is to evaluate the evidentiary base supporting the hypothesis that the increased hazard for developing MDD in certain subpopulations may be mediated, in part, by inflammogenic trait and/or state variations in NO signaling pathways. We conducted a non-systematic literature search for English language studies via PubMed and Google Scholar, from 1985 to October 2014. Replicated evidence suggests that NO has contrasting effects in the central nervous system (CNS). Low concentrations of NO are neuroprotective and mediate physiological signaling whereas higher concentrations mediate neuroinflammatory actions and are neurotoxic. Certain polymorphisms in the neuronal nitric oxide synthase gene (NOS1) are associated MDD. Furthermore, state variations (e.g. decreased levels of essential co-factor, 5,6,7,8-tetrahydrobiopterin [BH4], enhanced microglial cell activity) in the NO signaling pathway are associated with an increased risk of developing MDD. Increased concentrations of NO enhance the production of reactive nitrogen species (RNS) and reactive oxygen species (ROS), which are associated with an increase in pro-inflammatory cytokines. Taken together, evidences suggest that abnormalities in NO signaling may constitute a trait-marker related to MDD pathophysiology, which could be explored for novel therapeutic targets.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources