Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1989 Sep;7(4):S55-8; discussion S59.

Coronary autoregulation

Affiliations
  • PMID: 2681597
Review

Coronary autoregulation

E O Feigl. J Hypertens Suppl. 1989 Sep.

Abstract

Autoregulation of coronary blood flow is complicated because the heart provides the blood flow and pressure for its own perfusion. Aortic pressure is not only the perfusion pressure for the coronary circulation, but is also the afterload for the left ventricle. Coronary autoregulation has therefore been studied when the coronary circulation is cannulated and perfused separately from the aorta. Even then, changes in coronary artery pressure result in alterations in myocardial metabolism due to the Gregg effect. Local metabolic vascular control appears to be the dominant factor in coronary autoregulation. If myocardial metabolism is enhanced, coronary autoregulation occurs at a higher level of flow. The balance between myocardial oxygen supply and demand is critical for coronary autoregulation, since good autoregulation is only observed when the coronary venous oxygen tension is near the normal value of about 20 mmHg. At present there is little evidence for a myogenic mechanism of coronary autoregulation, and adenosine also does not seem to be involved. It is concluded that coronary autoregulation is predominantly due to a local metabolic mechanism, but the substance that mediates the control is unknown.

PubMed Disclaimer

Similar articles

Cited by

Publication types