Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Mar:105:146-51.
doi: 10.1016/j.phrs.2016.01.026. Epub 2016 Jan 24.

Jumonji histone demethylases as emerging therapeutic targets

Affiliations
Review

Jumonji histone demethylases as emerging therapeutic targets

Sung Yeon Park et al. Pharmacol Res. 2016 Mar.

Abstract

The methylation status of lysine residues in histones determines the transcription of surrounding genes by modulating the chromatin architecture. Jumonji domain-containing histone-lysine demethylases (Jmj-KDMs) remove the methyl moiety from lysine residues in histones by utilizing Fe(2+) and α-ketoglutarate. Since genetic alterations in Jmj-KDMs occur in various human cancers, the roles of Jmj-KDMs in cancer development and progression have been investigated, but still controversial. The KDM7 subfamily, which belongs to the Jmj-KDM family, is an emerging class of transcriptional coactivators because its members erase the repressive marks H3K9me2/1, H3K27me2/1, and H4K20 me1. Recently, KDM7C (alternatively named PHF2) was discovered as a new KDM7 member and identified to play a tumor-suppressive role through the reinforcement of p53-driven growth arrest and apoptosis. In this article, we generally reviewed the roles of Jmj-KDMs in human cancers and more discussed the molecular functions and the clinical significances of KDM7C.

Keywords: Cancer; Epigenetic regulator; Jumonji histone demethylases; p53.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources