Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Jun;157(6):1199-1204.
doi: 10.1097/j.pain.0000000000000499.

Gain control mechanisms in the nociceptive system

Affiliations
Review

Gain control mechanisms in the nociceptive system

Rolf-Detlef Treede. Pain. 2016 Jun.

Abstract

The "gate control theory of pain" of 1965 became famous for integrating clinical observations and the understanding of spinal dorsal horn circuitry at that time into a testable model. Although it became rapidly clear that spinal circuitry is much more complex than that proposed by Melzack and Wall, their prediction of the clinical efficacy of transcutaneous electrical nerve stimulation and spinal cord stimulation has left an important clinical legacy also 50 years later. In the meantime, it has been recognized that the sensitivity of the nociceptive system can be decreased or increased and that this "gain control" can occur at peripheral, spinal, and supraspinal levels. The resulting changes in pain sensitivity can be rapidly reversible or persistent, highly localized or widespread. Profiling of spatio-temporal characteristics of altered pain sensitivity (evoked pain to mechanical and/or heat stimuli) allows implications on the mechanisms likely active in a given patient, including peripheral or central sensitization, intraspinal or descending inhibition. This hypothesis generation in the diagnostic process is an essential step towards a mechanism-based treatment of pain. The challenge now is to generate the rational basis of multimodal pain therapy algorithms by including profile-based stratification of patients into studies on efficacy of pharmacological and nonpharmacological treatment modalities. This review outlines the current evidence base for this approach.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Anderson WS, O'Hara S, Lawson HC, Treede RD, Lenz FA. Plasticity of pain-related neuronal activity in the human thalamus. Prog Brain Res 2006;157:353–64.
    1. Baron R, Hans G, Dickenson AH. Peripheral input and its importance for central sensitization. Ann Neurol 2013;74:630–6.
    1. Baumann TK, Simone DA, Shain CN, LaMotte RH. Neurogenic hyperalgesia: the search for the primary cutaneous afferent fibers that contribute to capsaicin-induced pain and hyperalgesia. J Neurophysiol 1991;66:212–27.
    1. Baumgartner U, Iannetti GD, Zambreanu L, Stoeter P, Treede RD, Tracey I. Multiple somatotopic representations of heat and mechanical pain in the operculo-insular cortex: a high-resolution fMRI study. J Neurophysiol 2010;104:2863–72.
    1. Bessou P, Perl ER. Response of cutaneous sensory units with unmyelinated fibers to noxious stimuli. J Neurophysiol 1969;32:1025–43.