Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Apr;4(4):575-91.
doi: 10.1039/c5bm00589b. Epub 2016 Jan 28.

Shape matters when engineering mesoporous silica-based nanomedicines

Affiliations

Shape matters when engineering mesoporous silica-based nanomedicines

Nanjing Hao et al. Biomater Sci. 2016 Apr.

Abstract

Mesoporous silica nanomaterials have been successfully employed in the development of novel carriers for drug delivery. Numerous studies have been reported on engineering mesoporous silica-based carriers for drug loading, release, cellular uptake, and biocompatibility. A number of design parameters that govern the in vitro and in vivo performance of the carriers, including particle diameter, surface chemistry, and pore size, have been tuned to optimize nanomedicine efficacy. However, particle shape, which may generate a high impact on nanomedicine performance, has still not been thoroughly investigated. This is probably due to the limited availability of strategies and techniques to produce non-spherical mesoporous silica nanomaterials. Recent breakthroughs in controlling the particle shape of mesoporous silica nanomaterials have confirmed the important roles of shape on nanomedicine development. This review article introduces various fabrication methods for non-spherical mesoporous silica nanomaterials, including rod, ellipsoid, film, platelet/sheet, and cube, and the roles of particle shape in nanomedicine applications.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources