Molecular genetics of the human Na+/glucose cotransporter
- PMID: 2681963
- DOI: 10.1007/BF01717337
Molecular genetics of the human Na+/glucose cotransporter
Abstract
Recent success in expression cloning has revealed the primary structure of the Na+/glucose cotransporter from rabbit small intestine, and this has subsequently led to the cloning of the Na+/glucose cotransporters from human small intestine and human kidney. Close homology is evident between the rabbit and human intestinal Na+/glucose cotransporters at the DNA level, and the predicted amino acid and secondary structure levels. The Na+/glucose cotransporter amino acid sequence from human kidney is 57% identical with that from human small intestine. Significant homology also exists between these Na+/glucose cotransporters and the E. coli Na+/proline cotransporter (putP). The rabbit intestinal Na+/glucose cotransporter has 11 potential membrane spanning regions and 2 hydrophilic regions containing highly charged residues. The amino acid sequence shows two potential N-glycosylation sites (N-X-T/S). Using an in vitro translation approach we were able to determine that only one of these (Asn 248) is glycosylated. Expression experiments with Xenopus oocytes using the N-glycosylation inhibitor tunicamycin indicate that glycosylation of Asn 248 is required for functional expression of the transporter. The N-X-T/S sequence at Asn 248 is conserved in the human intestinal and the human renal Na+/glucose cotransporter. Chromosomal localization studies map the human intestinal Na+/glucose cotransporter gene (SGLT1) to the q11.2----qter region of chromosome 22 and the human renal Na+/glucose cotransporter gene (SGLT2) to the q-arm of chromosome 16.(ABSTRACT TRUNCATED AT 250 WORDS)
Similar articles
-
Homology of the human intestinal Na+/glucose and Escherichia coli Na+/proline cotransporters.Proc Natl Acad Sci U S A. 1989 Aug;86(15):5748-52. doi: 10.1073/pnas.86.15.5748. Proc Natl Acad Sci U S A. 1989. PMID: 2490366 Free PMC article.
-
Regulation of Na+/glucose cotransporters.J Exp Biol. 1997 Jan;200(Pt 2):287-93. doi: 10.1242/jeb.200.2.287. J Exp Biol. 1997. PMID: 9050236 Review.
-
Molecular evidence for two renal Na+/glucose cotransporters.Biochim Biophys Acta. 1992 Apr 29;1106(1):216-20. doi: 10.1016/0005-2736(92)90241-d. Biochim Biophys Acta. 1992. PMID: 1581333
-
Cloning of a human kidney cDNA with similarity to the sodium-glucose cotransporter.Am J Physiol. 1992 Sep;263(3 Pt 2):F459-65. doi: 10.1152/ajprenal.1992.263.3.F459. Am J Physiol. 1992. PMID: 1415574
-
Molecular biology approaches to comparative study of Na(+)-glucose cotransport.Am J Physiol. 1992 Sep;263(3 Pt 2):R489-95. doi: 10.1152/ajpregu.1992.263.3.R489. Am J Physiol. 1992. PMID: 1415632 Review.
Cited by
-
Chromosomal mapping of the human gene for the tricyclic antidepressant-sensitive noradrenaline transporter.Hum Genet. 1993 Apr;91(3):278-80. doi: 10.1007/BF00218272. Hum Genet. 1993. PMID: 8478011
-
The human kidney low affinity Na+/glucose cotransporter SGLT2. Delineation of the major renal reabsorptive mechanism for D-glucose.J Clin Invest. 1994 Jan;93(1):397-404. doi: 10.1172/JCI116972. J Clin Invest. 1994. PMID: 8282810 Free PMC article.
-
Synthesis, radiolabeling, and biological evaluation of methyl 6-deoxy-6-[18F]fluoro-4-thio-α-d-maltotrioside as a positron emission tomography bacterial imaging agent.RSC Adv. 2025 Mar 21;15(11):8809-8829. doi: 10.1039/d5ra00693g. eCollection 2025 Mar 17. RSC Adv. 2025. PMID: 40124918 Free PMC article.
-
Management and Complications of Short Bowel Syndrome: an Updated Review.Curr Gastroenterol Rep. 2016 Jul;18(7):40. doi: 10.1007/s11894-016-0511-3. Curr Gastroenterol Rep. 2016. PMID: 27324885 Review.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Other Literature Sources
Molecular Biology Databases