Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016:1350:161-96.
doi: 10.1007/978-1-4939-3043-2_8.

Development of Serum-Free Media for Lepidopteran Insect Cell Lines

Affiliations

Development of Serum-Free Media for Lepidopteran Insect Cell Lines

Leslie C L Chan et al. Methods Mol Biol. 2016.

Abstract

Baculovirus-based Insect Cell Technology (ICT) is widely used for the expression of recombinant heterologous proteins and baculovirus bioinsecticides, and has recently gained momentum as a commercial manufacturing platform for human and veterinary vaccines. The three key components of ICT are the Lepidopteran insect cell line, the baculovirus vector, and the growth medium. Insect cell growth media have evolved significantly in the past five decades, from basal media supplemented with hemolymph or animal serum, to highly optimized serum-free media and feeds (SFM and SFF) capable of supporting very high cell densities and recombinant protein yields. The substitution of animal sera with protein hydrolysates in SFM results in greatly reduced medium costs and much improved process scalability. However, both sera and hydrolysates share the disadvantage of lot-to-lot variability, which is detrimental to process reproducibility. Hence, the industrialization of ICT would benefit greatly from chemically defined media (CDM) for insect cells, which are not yet commercially available. On the other hand, applications such as baculovirus bioinsecticides would need truly low cost serum-free media and feeds (LC-SFM and LC-SFF) for economic viability, which require the substitution of a majority of expensive added amino acids with even higher levels of hydrolysates, hence increasing the risk of a variable process. CDM developments are anticipated to benefit both conventional and low cost ICT applications, by identifying key growth factors in hydrolysates for more targeted media and feed design.

Keywords: Baculovirus expression vector system; Chemically defined medium; Insect cell technology; Lepidopteran cell lines; Protein hydrolysates; Serum -free medium.

PubMed Disclaimer

Similar articles

Cited by

Substances

LinkOut - more resources