Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Feb;103(2):298-306.
doi: 10.3732/ajb.1500358. Epub 2016 Jan 28.

Water uptake of Alaskan tundra evergreens during the winter-spring transition

Affiliations
Free article

Water uptake of Alaskan tundra evergreens during the winter-spring transition

Jonathan G Moser et al. Am J Bot. 2016 Feb.
Free article

Abstract

Premise of the study: The cold season in the Arctic extends over 8 to 9 mo, yet little is known about vascular plant physiology during this period. Evergreen species photosynthesize under the snow, implying that they are exchanging water with the atmosphere. However, liquid water available for plant uptake may be limited at this time. The study objective was to determine whether evergreen plants are actively taking up water while under snow and/or immediately following snowmelt during spring thaw.

Methods: In two in situ experiments, one at the plot level and another at the individual species level, (2)H-labeled water was used as a tracer injected beneath the snow, after which plant stems and leaves were tested for the presence of the label. In separate experiments, excised shoots of evergreen species were exposed to (2)H-labeled water for ∼5 s or 60 min and tested for foliar uptake of the label.

Key results: In both the plot-level and the species-level experiments, some (2)H-labeled water was found in leaves and stems. Additionally, excised individual plant shoots exposed to labeled water for 60 min took up significantly more (2)H-label than shoots exposed ∼5 s.

Conclusions: Evergreen tundra plants take up water under snow cover, some via roots, but also likely by foliar uptake. The ability to take up water in the subnivean environment allows evergreen tundra plants to take advantage of mild spring conditions under the snow and replenish carbon lost by winter respiration.

Keywords: Toolik Field Station; cold season; deuterium; evergreen; frozen soil; permafrost; snow cover; stable isotope; tundra; water uptake.

PubMed Disclaimer

Publication types

LinkOut - more resources