Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Feb 23;7(8):9163-74.
doi: 10.18632/oncotarget.7036.

Differential regulation of mTOR signaling determines sensitivity to AKT inhibition in diffuse large B cell lymphoma

Affiliations

Differential regulation of mTOR signaling determines sensitivity to AKT inhibition in diffuse large B cell lymphoma

Scott A Ezell et al. Oncotarget. .

Abstract

Agents that target components of the PI3K/AKT/mTOR pathway are under investigation for the treatment of diffuse large B cell lymphoma (DLBCL). Given the highly heterogeneous nature of DLBCL, it is not clear whether all subtypes of DLBCL will be susceptible to PI3K pathway inhibition, or which kinase within this pathway is the most favorable target. Pharmacological profiling of a panel of DLBCL cell lines revealed a subset of DLBCL that was resistant to AKT inhibition. Strikingly, sensitivity to AKT inhibitors correlated with the ability of these inhibitors to block phosphorylation of S6K1 and ribosomal protein S6. Cell lines resistant to AKT inhibition activated S6K1 independent of AKT either through upregulation of PIM2 or through activation by B cell receptor (BCR) signaling components. Finally, combined inhibition of AKT and BTK, PIM2, or S6K1 proved to be an effective strategy to overcome resistance to AKT inhibition in DLBCL.

Keywords: AKT; DLBCL; Ibrutinib; S6K1; mTOR.

PubMed Disclaimer

Conflict of interest statement

CONFLICTS OF INTEREST

All authors are current or former employees of AstraZeneca.

Figures

Figure 1
Figure 1. DLBCL subtypes have different sensitivities to AKT inhibitors
A. Cell lines were sorted according to drug sensitivity (pGI50) by unsupervised hierarchical clustering. Sensitivity was determined using a 72h Alamar Blue assay. B. Dose response curves were generated for the indicated compounds using a 72h CellTiterGlo assay (n = 3). C. DLBCL lines were treated with GSK690693 (5μM) for 1h and 24h. ABC cells are colored in red. GCB are colored in blue.
Figure 2
Figure 2. Distinct regulation of S6K1 signaling in DLBCL subtypes
A. DLBCL lines were treated with GSK690693 (5μM) and MK2206 (5μM) for 1h or 24h before Western blotting. B. Cell lines were treated with PF-4708671 (10μM) or GSK690693 (5μM) and cell viability was measured after 72h by trypan blue staining followed by Cellometer reading (n = 3). Asterisk indicates p < 0.05 C. Cell lines were treated with the indicated compounds for 24h. ABC cells are colored in red. GCB are colored in blue. Intermediate cells are colored in gray.
Figure 3
Figure 3. mTOR signalling is activated independently of AKT in ABC-DLBCL
A. TMD8 cells were treated for 24h hours with ibrutinib (10nM), AZD2014 (200nM), everolimus (100nM) or GSK690693 (5μM). B. Cell lines were treated for 24 hours with inhibitors of BTK (ibrutinib, 10nM), PKCβ (LY-333531, 4μM), SYK (GS-9973, 1μM) C. TMD8 and OCILY10 cells stably expressing pGreenFire NF-κB-Luc were treated for 18h with inhibitors at previously indicated concentrations and IKKβ (Bayer inhibitor C21H25ClN4O2, 3μM). Luciferase activity was then assayed using the Dual-Glo (n = 6). Luminescence was normalized to cell number from viable cell counting by Cellometer. D. Cells were treated for 1h or 24h with Bayer IKKβ inhibitor (3μM) before Western blotting. ABC cells are colored in red. GCB are colored in blue. Intermediate cells are colored in gray.
Figure 4
Figure 4. PIM can regulate AKT-independent mTOR signalling
A. PIM2 protein expression was assayed by Western blot. GI50 values for AZD1208 were derived from 72h day Alamar Blue assay. B. Net growth was measured over 72h by viable cell counting using the Cellometer system (n = 3) C. Cell lines were treated for 24h with AZD1208 (1μM) before Western blotting. ABC cells are colored in red. GCB are colored in blue. Intermediate cells are colored in gray.
Figure 5
Figure 5. Combination therapy more effectively inhibits mTOR signalling
A. RI1 cells were treated with GSK690693 (1μM) and AZD1208 (1μM) and proliferation was measured over 72h by CellTiterGlo. B. As in A. but cell were treated for 24h before Western blotting. C. TMD8 cells were treated with GSK690693 (1μM) and ibrutinib (10nM) for 24 hours before Western blotting. D. 72 hour viability was measured in TMD8 by Alamar Blue assay after treatment with ibrutinib and GSK690693 at the indicated concentrations.

Similar articles

Cited by

References

    1. Wright G, Tan B, Rosenwald A, Hurt EH, Wiestner A, Staudt LM. A gene expression-based method to diagnose clinically distinct subgroups of diffuse large B cell lymphoma. Proceedings of the National Academy of Sciences of the United States of America. 2003;100:9991–9996. - PMC - PubMed
    1. Davis RE, Ngo VN, Lenz G, Tolar P, Young RM, Romesser PB, Kohlhammer H, Lamy L, Zhao H, Yang Y, Xu W, Shaffer AL, Wright G, Xiao W, Powell J, Jiang JK, et al. Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma. Nature. 2010;463:88–92. - PMC - PubMed
    1. Gordon MS, Kanegai CM, Doerr JR, Wall R. Somatic hypermutation of the B cell receptor genes B29 (Igbeta, CD79b) and mb1 (Igalpha, CD79a) Proceedings of the National Academy of Sciences of the United States of America. 2003;100:4126–4131. - PMC - PubMed
    1. Lenz G, Davis RE, Ngo VN, Lam L, George TC, Wright GW, Dave SS, Zhao H, Xu W, Rosenwald A, Ott G, Muller-Hermelink HK, Gascoyne RD, Connors JM, Rimsza LM, Campo E, et al. Oncogenic CARD11 mutations in human diffuse large B cell lymphoma. Science. 2008;319:1676–1679. - PubMed
    1. Compagno M, Lim WK, Grunn A, Nandula SV, Brahmachary M, Shen Q, Bertoni F, Ponzoni M, Scandurra M, Califano A, Bhagat G, Chadburn A, Dalla-Favera R, Pasqualucci L. Mutations of multiple genes cause deregulation of NF-kappaB in diffuse large B-cell lymphoma. Nature. 2009;459:717–721. - PMC - PubMed

Publication types

MeSH terms

Substances

LinkOut - more resources